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Abstract

The study of genome maps is pivotal to understanding the sequence of a genome.
There are many algorithmic techniques that are used to find this sequence using
data obtained from experimental results. This report covers some of these tech-
niques, and their application to radiation hybrid maps.

1 Introduction

The ultimate goal when studying the genome of an organism is to obtain the complete
genomic sequence. One of the steps towards obtaining this isgenome mapping. This is
the process of finding segments of the whole genome calledmarkers, and reconstruct-
ing the order that these markers occur in on the genome. Markers are generally defined
as orthologous segments of the genome when compared with theknown sequence of
another organism. While it is rare to find an exact one-to-onemapping between these
genomic segments in the two organisms, two closely related organisms may have well
defined markers. This will be assumed to be the case for the rest of the report. So, each
organism we consider will be assumed to have exactly one copyof each marker in its
genome.

The aim of genome mapping, as stated, is to reconstruct the order that these markers
appear in. To do this, experiments are performed to obtain raw data that might provide
evidence as to what the true order is.

The data obtained from these experiments is used as the inputfor many powerful
algorithmic tools which try to reconstruct the true order. This report studies some of
these tools and the principles behind them. Throughout the report, the genome we are
reconstructing shall be assumed to be unichromosomal and linear, unless otherwise
mentioned.

Section 2 discusses how the marker order on a reference genome can be used to
reconstruct the marker order in the new genome. Section 3 focuses on the analysis of
data obtained from a wet-experiment known as radiation hybridization. Section 4 ex-
pands on the methods discussed in section 2 to construct a setof ‘good’ marker orders.
We also discuss some of the results that have been published using these methods in
section 5.
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2 Comparative genome approach to marker ordering

The following framework was provided by Faraut et al. [5]. Their model uses a refer-
ence genome find the order of orthologous genes (markers) in arelated organism.

Let us identify the markers by the labels{1, 2, . . . , n}. An ordering of these mark-
ers is a permutationπ of these labels. In general, the ordering of the markers in a
sequenced genome of an organism is taken as reference, and isassigned the identity
permutationπref . This identifies each marker with a unique label.

To find the ordering of these markers in another genome, experiments are first used
to obtain evidence for the true ordering. We shall call this evidenceX . So, using
Bayesian inference, our problem is to find the permutation, i.e. an ordering of the
markers,̄π which maximizes the following probability.

Pr (π|X) =
Pr (X |π) · Pr (π)

∑

σ∈Sn
Pr (X |σ) · Pr (σ)

. (1)

Since the denominator is a constant for every permutation, we may instead maximize
the right hand side of the following relation

Pr (π|X) ∝ Pr (X |π) · Pr (π) . (2)

The termPr (X |π) depends upon the outcome of the experiment, as well as parameters
intrinsic to it. Estimating this quantity based on radiation-hybrid experiments will be
part of the next section of this report.

The other term,Pr (π) can be naively take to be1n! , which says that the prior on
each permutation is equal, or equivalently that each order is equally likely. Thus, the
optimal order only depends on the posterior.

Faraut et al. modelled the probability of an order as a function of its evolution-
ary distance from the reference genome. The metric used was the number of adjacent
markers inπ which were not adjacent inπref . Thus, the metric is similar to the break-
point distance. However, the direction of the markers is notimportant, and so the
permutations are unsigned. In the report, we shall use the term breakpoint distanceto
denote this metric instead of the more classical definition of the same. The occurrence
of a breakpoint between two markers was modelled using a Poisson process. The pa-
rameter used for the process is the expected breakpoint distance between the reference
genome and the proposed gene order.

Assume that some orderπ has breakpoint distancek from the reference genome.
In that case, the probability of the order will be given as follows:

Pr (π) = Pr (π|πref )

= Pr (π|k)Pr (k) . (3)

Then, equation 2 becomes

Pr (π|X) ∝ Pr (X |π) · Pr (π|k)Pr (k) . (4)

Since the occurrence of breakpoints is modelled as a Poissonprocess, the termPr (k),
which is the probability of observingk breakpoints, is given byλ

ke−λ

k! , whereλ is the
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parameter controlling the Poisson process. The other term is simply the probability of
observingπ given that there are exactlyk breakpoints. So,

Pr (π|k) =
1

On (k)
, (5)

whereOn (k) is the total number of permutations which are at breakpoint distancek
from the reference genome.

To maximize the right hand side of 4, it is clear that an order with a low number
of breakpoints with the reference order will be preferred, and this balances the poste-
rior probability due toX . This brings us to the combinatorial question of finding the
number of permutations at breakpoint distancek from the reference genome.

2.1 Number of permutations with k breakpoints

The problem of finding the number of permutations at a breakpoint distance ofk from
the reference genome is solved by setting up a system of recurrences. These recur-
rences capture the possible scenarios when a genome of sizen − 1 is expanded to a
genome of sizen.

A segmentof a permutation is a maximal set of markers in the permutation such that
all the markers in the segment are also adjacent in the reference genome. A segment
with a single marker is called anisolatedmarker. Consider a permutation of length
n− 1, with k − 1 breakpoints with the identity. Now we proceed by induction.

(i) If the markern− 1 is at the end of the segment, and we add the markern at the
end, we will not create any breakpoints. So, the new permutation onn markers
will havek − 1 break points.

(ii) If the markern is inserted next to the markern− 1, but inside a segment instead
of at an end, then the new permutation will havek breakpoints.

(iii) If we insert the markern at the position of an existing breakpoint, we create one
extra break, and the new permutation hask breaks.

(iv) If we insert the markern at the end of the permutation, such that the end is not
the markern− 1, the new permutation will havek breaks.

(v) If the markern is inserted between markersi, i + 1 in a segment, such that
i+ 1 6= n− 1, then the new permutation will havek + 1 breakpoints.

The position of the markern − 1, at the end of a segment or as an isolated marker, is
the only information required to construct the next set of permutations. Now, we define
the following quantities.

• Ibn (k) =The number of permutations of sizen with k breakpoints, such that the
markern is isolated at the border of the permutation.

• Icn (k) =The number of permutations of sizen with k breakpoints, such that
the markern is isolated somewhere in the middle of the permutation (not at the
border).
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• Sb
n (k) =The number of permutations of sizen with k breakpoints, such that the

markern is part of a segment, and is at the border of the permutation.

• Sc
n (k) =The number of permutations of sizen with k breakpoints, such that the

markern is part of a segment, somewhere in the middle of the permutation.

• Ob
n (k) = Ibn (k)+Sb

n (k) =The number of permutations of sizen with k break-
points, such that the markern is at the border of the permutation.

• Oc
n (k) = Icn (k)+Sc

n (k) =The number of permutations of sizen with k break-
points, such that the markern is in the middle of the permutation.

Clearly, Oc
n (k) + Ob

n (k) = On (k). Using the initial valuesIb2 (0) = Ic2 (0) =
Sc
2 (0) = 0, Sb

2 (0) = 1, we can define the following recurrence relations by using
inclusion-exclusion.

Ibn (k) = Ob
n−1 (k − 1) + 2Oc

n−1 (k − 1) (6a)

Icn (k) = (k − 1)On−1 (k − 1) + (n− k)On−1 (k − 2)− Sc
n (k − 1) (6b)

Sb
n (k) = Ob

n−1 (k) (6c)

Sc
n (k) = Ibn−1 (k) + 2Icn−1 (k) + Sc

n−1 (k) + Sc
n−1 (k − 1) + Sb

n−1 (k − 1) (6d)

Using these recurrences, it is easy to compute allOn (k) for somen ≤ N andk < N
is time quadratic inN .

2.2 Extension to multichromosomal genomes

While the recurrence relations presented above hold for linear, unichromosomal genomes,
it is easy to modify the same for multichromosomal genomes. To do so, we first glue
together the chromosomes of the reference genome in some prespecified order. This
gives us a unichromosomal genome, which can be labelled as before, but the gluing
points are treated as breakpoints instead of adjacencies. Now, assuming that the refer-
ence genome hadr chromosomes, and the order under consideration hasni markers
from chromosomei for 1 ≤ i ≤ r, we notice that while adding markers, each time we
finish adding markers from chromosomei and start adding markers from chromosome

i + 1, we will have to introduce a breakpoint. So, when we add the
(

1 +
∑j

i=1 ni

)th

marker to the new order (note that this is not the identification number of the marker,
but the step in which it is added to the new genome), where1 ≤ j ≤ r, then we have
to make the following modifications to our recurrence relations.

Ibn (k) = 2On−1 (k − 1) (7a)

Icn (k) = (k − 1)On−1 (k − 1) + (n− k)On−1 (k − 2) (7b)

Sb
n (k) = Sc

n (k) = 0 (7c)

The final case says that if we are adding a marker from a new chromosome, it is not
possible to create an adjacency.
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2.3 Final steps to setting up the problem

Having calculated the probability of choosing the orderπ given the reference, we can
look at the following log-likelihood maximization problem.

lnPr (π|X) = lnPr (X |π) + ln [Pr (π|k)Prλ (k)] + C, (8)

whereC arises from the normalization constant. This is clearly equivalent to the prob-
lem as stated in equation 4. The next step is to computePr (π|k) for 0 ≤ k ≤ n− 1,
and to find a least squares fita + bk to ln [Pr (π|k)Prλ (k)]. After this reduction
is made, the problem is generally reduced to an instance of the Travelling Salesman
Problem, as we shall see in the case of Radiation Hybrid maps in section 3.

2.4 Using more than one reference

If there is more than one genome which supports the case for anordering, then we
simply need to treat the two reference orders are independent of each other, as shown
in figure 1a. Since the termsln [Pr (π|k)Prλ (k)] in equation 8 are independent of
the position of the markers, and dependent solely on the number of breakpoints with
the reference genome, we can easily generalize this. Assuming that the two reference
orders given to us areπref1 andπref2 (we can take one to be the identity without loss
of generality),

Pr (π|πref1, πref2) = Pr (π|k1)Pr (π|k2)Prλ1
(k1)Prλ2

(k2) ,

wherek1 andk2 are the number of breakpoints thatπ has withπref1 andπref2 respec-
tively, andλ1 andλ2 are the controlling parameters of the respective Poisson processes
of introducing breakpoints. Using the recurrence relations, these are easily computable,
and the least squares fit for both can be calculated.

lnPr (π|X) = lnPr (X |π) + a1 + b1k1 + a2 + b2k2 + C′. (9)

The process can also be extended when using more than two references.
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(a) Independent reference genomes
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(b) Through an intermediate genome

Figure 1: Using more than one reference
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If, on the other hand, we wish to be more rigorous, and not assume the indepen-
dence of the two reference genomes, we might wish to considerconstructing an inter-
mediate ordering of the markers which is the most probable ordering based on the two
reference genomes, depicted in figure 1b. Using Bayesian inference, the two reference
orders will be conditionally independent of each other, given the parent. Thus, we want
to find an order̄πinter which maximizes the following probability.

Pr (πinter |πref1, πref2) =
Pr (πref1|πinter)Pr (πref2|πinter)

(
∑

σ∈Sn
Pr (πref1|πσ)

) (
∑

σ∈Sn
Pr (πref2|πσ)

)

Note that there is no posterior evidence forπ̄inter apart from the reference orders. We
can then use this intermediate genome as the new reference tofind the optimal order̄π.

3 Radiation Hybrid maps

The construction of a reliable order of markers on a chromosome, or amapping of
the markersis an important step towards sequencing chromosomal DNA. Radiation
hybrid (RH) mapping is a technique that is used to construct such maps, and estimate
the distance between the markers on the chromosome.

The experimental stage of RH mapping consists of irradiating the cells of the organ-
ism on whose chromosome we need to order the markers, and fusing these cells with
healthy cells of another organism. The irradiation breaks the healthy chromosome of
the original organism at random intervals, into manyfragments, which are subintervals
of the original chromosome, and contains the markers in thissubinterval. Fusing the
cells results in therescueof a subset of these fragments, by recombination with healthy
cells. This creates ahybrid clone, whose chromosome can be tested for the presence or
absence of each marker.

The experiment is repeated several times, and provides us with data to analyze, and
with parameters that can be incorporated into the analytical model that we adopt. The
algorithmic part of the RH process aims to deduce the most likely order of the markers
on the original chromosome, given the retention pattern of the markers, i.e. the absence
or presence of the markers on each hybrid.

The question of ‘most likely order’ is generally solved by reducing the problem
to a maximum likelihood estimation (MLE) setting, or by minimizing the number of
obligate chromosomal breaks(OCBs), as we shall explain later. Both these instances
can be further reduced to the travelling salesman problem [1,3]. Methods to approach
the problem also include trying to construct a minimal weighted Hamiltonian path [2],
but we shall restrict ourselves to a high level discussion ofthe reduction of the problem
to a TSP, rather than focusing on the heuristics used to solvethe TSP.

A variant of the maximum likelihood approach aims to order the markers with
respect to some reference order. Furthermore, this approach can be extended to provide
a map distribution, i.e. other possible maps that can have led to the radiation hybrid
data, assuming uncertainty in the reconstructed order.

The following section introduces the object constructed from radiation hybrid data,
on which all these techniques can be applied. This shall be followed by brief dis-

6



cussions of the minimization of obligate chromosomal breaks, and of the maximum
likelihood methods.

3.1 The Object

Assume that there werem independent hybridization experiments performed on the
same chromosome. This producesm hybrids.

If we know that the original chromosome hadn markers, we can check each hybrid
for the presence or absence of these markers. Assuming an arbitrary order of the mark-
ers, the presence or absence of the markers in these hybrids can be given in a matrix
X = (xij)m×n, wherexij is 0 if markerj is not present in hybridi, and1 otherwise.

For example, consider3 hybrids with4 markers in the original chromosome. A
possible matrix would be:





1 2 3 4

h1 1 0 0 1
h2 0 1 0 1
h3 0 1 1 0



.

The matrix construction described above is valid for haploid, error free data. This
matrix can be modified for the following cases:

1. For diploid data, we get a matrix with entries0, 1, 2, wherexij is 2 if both copies
of the marker are rescued and found on the hybrid.

2. There may be typing (reading) errors, in which case we may be uncertain whether
a certain marker is present or absent. Using the notation of Ben-Dor et al., these
entries will be depicted as?.

It is easy to see that there aren!/2 possible orderings of the columns. Typically,n is
large, of the order of hundreds, or even thousands.

The assumption that markers that are close together will lieon the same fragment,
i.e. there will be no break between them, means that we desirean ordering of the
columns of the matrix that tries to group all the1’s together. This leads to the first
optimization criterion.

3.2 Obligate Chromosomal breaks(OCB)

An obligate chromosomal break in a hybrid for a certain marker order is scored when-
ever a1 is immediately followed by a0, or a0 is immediately followed by a1 while
traversing the corresponding row of the matrix. The OCB score for the entire matrix for
a given marker order is the sum over the OCB scores of each row/hybrid. In the matrix
given before, there are2 OCBs in the first row, and7 OCBs in total. Non-informative
entries in the matrix, i.e. those marked by ‘?’, do not count towards breaks, and changes
from 0 to ? or 1 to 0 etc., is ignored while counting the number of OCBs.

Finding a column order with the minimum number of obligate chromosomal breaks
translates to finding a marker order in which the least numberof radiation induced
breaks have occurred. If there is an order with no obligate chromosomal breaks, then
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the matrix, by definition, has the consecutive ones property. Otherwise, the problem
of optimizing the number of such breaks is performed by reducing the problem to an
instance of the TSP.

3.2.1 Reduction to TSP

Assume that we are given a matrixX = (xij)m×n of m hybrids andn markers, with
possible typing errors, but no diploid data. The matrix is used to construct a complete
graph, whose vertex set is the set of markers and a separate source vertexs. Then, the
following rules are used to weigh the edges.

1. The edges froms to each vertex is given a weight of0.

2. The edge from a vertexu to v is given the following weight:

wuv =
# of entriesi in whichxiu andxiv differ by 1

# of entriesi in which bothxiu andxiv are not ‘?’

The edge has a higher weight if there are more hybrids in whichonly one of
markeru andv is retained.

Assuming we have full information, i.e. no non-informativeentries in the matrix, the
minimum number of obligate chromosomal breaks will bem times the optimal Trav-
elling salesman tour in this graph. Thus, the TSP solution tothis graph will minimize
the number of OCBs, and yield an optimal ordering of the markers.

3.2.2 Ambiguous entries

In the case when there are ambiguous entries, the TSP solution need not be optimal.
consider the following matrix:













1 2 3

h1 1 ? 1
h2 1 ? 1
h3 1 ? 1
h4 0 0 1
h5 0 1 1













.

In this case, the optimal TSP tour is given by the permutation(1, 3, 2) of the markers,
but induces3 breaks. The identity order, though, induces only2 breaks.

This last case is generally claimed to be close to the actual solution, since most data
has low fraction of ambiguous entries.

3.3 Maximum Likelihood Estimation (MLE)

The second optimization criterion is to estimate an order and the distance between
the markers such that the probability of the resulting RH data, given that order, is
maximized. This is called the likelihood of that map/order.We introduce some notation
here that will be used in this section, as well as the others tofollow it.
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The probability of rescue or retentionp is the probability that a fragment created
by irradiating the cells is recombined to form a hybrid. The variableq will be used to
denote1 − p, i.e., the probability that a fragment is not rescued.p is estimated by the
ratio of the number of1’s in the hybrid data to the number of1’s and0’s. If the data is
fully informative, i.e. no ambiguous entries, then this is the ratio of1’s to the size of
the matrix. The breakage probabilityθij between two markersi andj is the probability
that a radiation induced break occurs between markeri and markerj.

Apart from these, we can also have error rates for false positive and false negative
observations, as well as factors that come into play when we consider the ploidity of
the chromosome. For our purposes we shall examine only the methods used to analyze
haploid, error free data.

3.3.1 Estimating breakage probabilities

The first step in maximum likelihood estimation is to find the breakage probabilityθij
between each pair of markers. For a single hybridhk, we can denote the possible cases
for the presence or absence of the markersi andj, and the probabilities associated with
each, as follows.

i 0 1
j
0 q (1− θijp) θijqp
1 θijqp p (1− θijq)

For example, both markersi andj will be absent on the hybrid if one of two cases
is satisfied:

1. Markeri is lost (probabilityq), and markerj was on the same fragment (no break
probability1− θij ).

2. A break occurred (probabilityθij ) and bothi andj are lost.

This gives us the first entry in the table.
Letn00 denote the number of hybrids in which both markeri andj are not present,

n10 the number of hybrids in which only markeri is present,n01 the number of hybrids
in which only markerj is present, andn11 the number of hybrids in which both are
present. Then the probability of observing the columns(xki) and(xkj), where1 ≤
k ≤ m, together, givenθij is equal to

Pr ((xki) , (xkj) |θij) = (q (1− θijp))
n00 (θijqp)

n01+n10 (p (1− θijq))
n11 .

This probability is maximized when the derivative of this term with respect toθij is
zero. A quadratic polynomial is obtained, which can be solver for θij , and the solution
chosen is one which lies in[0, 1] and maximizes the probability.

Using this method, the breakage probability for every pair of markersi, j is esti-
mated. The probability thus maximized is the likelihood of seeing the columns(xki)
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and(xkj) together. The likelihood of observing a single column(xki), Pr (π (1)), is
given byqn0pn1 , wheren1 is the number of1’s in the column, andn0 is the number of
0’s. If we assume that the probability of observing a column isdependent only on its
immediate predecessor (i.e. the columns before it do not affect it), then we can define
the two-point likelihood of an orderπ of the markers as follows:

Pr (X |π) = Pr ((π (1)))Pr ((π (2)) | (π (1))) . . . P r ((π (n)) | (π (n− 1))) , (10)

where each(π (i)) is the column of the marker in positioni as observed inX . Since
we need to find the marker order which gives us the greatest probability of observing
the dataX , we need to find an order which maximizes this quantity.

3.3.2 Reduction to TSP

The case of reducing the MLE problem to TSP is slightly more involved than the case
of OCBs. The graph is the same complete graph on vertices labelled by the markers
and a source vertex, which is a dummy marker. Before the weights are calculated, we
define transition probabilities between markers.

• The transition probabilityti from s to the markeri, is given by

ti = pn1/2qn0/2,

wheren1 is the number of hybrids in which the markeri is present, andn0 is the
number of hybrids in which it is absent.

• The transition probabilitytij from a markeri to j or vice-versa, is given by

tij = (q (1− θijp))
n00 (θijqp)

(n01+n10)/2 (p (1− θijq))
n11 .

where the definitions ofn00, n01, n10, n11 are the same as given before.

This definition of transition probabilities can be exploited using Karp et al.’s result that,
for a given permutationπ of the markers, the product of the transition probabilitiesis
equal to the likelihood of that order of markers [6]. This wasleft as an exercise in the
original paper, and was proved in the paper by Aggarwal et al.for completeness [1].

To maximize the likelihood, we can minimize the negative log-likelihood. Thus,
we weight each edgeij by− ln tij andsi by− ln ti. Now, the solution to the TSP will
minimize the weight of the total tour, which maximizes the likelihood, and the order of
traversal again gives us the most probable order.

3.3.3 Utilising the comparative genome approach

In section 2, we saw a method for introducing a prior on the ordering of the markers
using a reference order. Faraut et al. used their own approach to attack RH-data sets.
The termlnPr (X |π) in equation 8 is the taken to be the log-likelihood that we see
the RH-dataX for a given marker orderingπ. Using Karp et al.’s reduction, and the
linear regression fit discussed in section 2.3, the equationreduces to

lnPr (π|X) = ln tπ(1)tπ(2)π(1) . . . tπ(n−1)π(n)tπ(n) + a+ bk + C. (11)

Now, we change the weights to each edgeij as follows:
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(i) Each edgesi shall be weighed− ln ti − a/2.

(ii) An edge ij shall be weighed− ln tij − b × γij , whereγij is 0 if i andj are
adjacent in the reference order, and1 otherwise.

This modification in the weights of the graphs weighs the edges such that a TSP solu-
tion will maximize the probability of the order conditionalon both the RH-data as well
as the reference order.

4 Statistical confidence measures

In section 2, we discussed the model used by Faraut et al. to find a prior distribution
for marker orderings. Servin et al. [7] used this information to evaluate the uncertainty
in a constructed genome map. The essence of their work is thatinstead of calculating a
specified order of the markers, they compute the probabilities for certain ‘good’ orders
which agree with some reference genome, and with the evidence. Based on these
orders, they construct what they call arobust map, which captures the possible ordering
of the markers.

4.1 Determining the confidence measure

Servin et al. proposed a Markov Chain Monte Carlo approach toestimate the confi-
dence measure in a constructed map. Recall equations 3 and 4,which together give:

Pr (π|X) ∝ Pr (X |π) · Pr (π|πref ) .

To compute the likelihood of an orderπ means navigating through alln!/2 possible
orders ofn markers. Instead, we would like to look at permutations thatare somehow
close to the permutationπ. The MCMC algorithm does this in two steps. The first step
is a Metropolis Hastings sampling step, which is performed once for every iteration.
The second step is a Gibbs sampling step which is performed2n times, wheren is the
number of markers.

Metropolis Hastings sampling of inversions: The first step in the MCMC looks at the
mapI (π, i, j), 1 ≤ i ≤ n − 1, i + 1 ≤ j ≤ n, which is the permutationπ

′

obtained
by inversion of the segment between markersi andj (i andj included) inπ. For each

π
′

= I (π, i, j), the quantityQ (π, i, j) = Pr
(

X |π
′

)

Pr
(

π
′

|πref

)

is computed.

Using this, we get the following probability distribution:

Pr (π′|π) =
Q (π, i′, j′)

∑

(i,j) Q (π, i, j)
. (12)

We sample an inversion from this probability distribution,and accept it with the fol-
lowing probability:

min

(

1,
P r (π′|X)Pr (π|π′)

Pr (π|X)Pr (π′|π)

)

.
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So, there is a greater chance of accepting the inversion if itincreases the likelihood of
the orderπ′.

Gibbs sampling of marker replacement: Once the Metropolis Hastings step is run, the
Gibbs sampling step is run2n times when there aren markers.T (π, i, i′) is defined
as the map in which the marker at positioni in π exchanges places with the marker at
positioni′. This defines a probability distribution:

Pr (i′|π−i, X) =
Pr (X |T (π, i, i′))Pr (T (π, i, i′) |πref )

∑

k Pr (X |T (π, i, k))Pr (T (π, i, k) |πref )
, (13)

whereπ−i is the orderπ with the marker at positioni removed. An iteration of this
step is completed by choosing an order from this distribution.

These steps are run after the comparative approach is used construct an initial order
π̄, and, after some ‘burning’ iterations, converge to some orders in the neighbourhood
of π̄.

Once the algorithm has run, we obtain a map distribution, anda posterior proba-
bility associated to each order in this distribution. Theseare the confidence measures
for the maps obtained, i.e. the probability that the map agrees with the data and the
reference.

4.2 Constructing robust maps

The maps constructed by the algorithm may number in the thousands, but since they
are all somehow ‘close’, these maps share various structures. We are interested in three
kinds of structures:

• Sequencesof markers, i.e. markers that are organized consecutively in all maps.

• Sequences of sequences, ormetasequences, which are consecutive sequences in
all maps.

• Common intervals, sets of markers that occur together, but not necessarily con-
secutively in all maps.

Finding the sequences and meta-sequences in the orders is relatively easy. The algo-
rithm of Bergeron et al. [4] can be used to find all the common intervals between
the orders. These structures can then be arranged in the formof a PQ-tree (called a
metamap), which is arobust map, in the sense that the probability of finding these
structures in the true marker order is very high. The P nodes hold the probabilities
of concurrent order of the markers associated with them, andthe Q nodes hold the
probabilities of each orientation of the associated markers.

5 Discussion of the results

The method of Faraut et al. [5] was used to find an ordering of the canine chromosome
2 with 426 markers typed to obtain an RH dataset, using the human genomeas a ref-
erence map. Each marker occurs on average after200kb. Using a Poisson constant of
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1 for modelling the occurrence of breakpoints, the approach used was in closer agree-
ment with the dog genome sequence than the order obtained by naive TSP calculation.
The effect of the constant was judged to be minimal after experiments on simulated
data.

The same dataset was used by Servin et al. [7], only they used423 markers. The
map distribution constructed using the MCMC algorithm consisted of over10000
maps. The main observation was that areas of conflict in the reconstructed map by
Faraut et al. and the true genome order were regions where other orderings were seen
in the map distribution, which makes the case for a confidencemeasure. In their own
words, ”our method allows us to pinpoint regions where the assembly order disagrees
with an RH map order that is strongly supported by RH data” [7].

6 Conclusion

The report discusses some advances in the field of marker ordering in genome maps, in
particular RH maps. The methods of Faraut and Servin are general frameworks that can
be applied to the reconstruction of maker order from experimental data. Their methods
and results lean heavily on the framework provided by Karp, Aggarwal and Ben-Dor
for reconstructing marker orderings from RH data, which utilizes an elegant reduction
to the Travelling Salesman Problem. The question of using more than one reference
order to reconstruct the orders remains an open problem, butthe framework seems to
be flexible enough to allow us to incorporate this.
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hybrid map construction and integration strategy, Genome Research10 (2000), no. 3, 350.

[2] A. Ben-Dor and B. Chor,On constructing radiation hybrid maps, Journal of Computational Biology4
(1997), no. 4, 517–533.

[3] A. Ben-Dor, B. Chor, and D. Pelleg,RHO-radiation hybrid ordering, Genome Research10(2000), no. 3,
365.

[4] A. Bergeron, C. Chauve, F. De Montgolfier, and M. Raffinot,Computing common intervals of k per-
mutations, with applications to modular decomposition of graphs, Algorithms–ESA 2005 (2005), 779–
790.

[5] T. Faraut, S. De Givry, P. Chabrier, T. Derrien, F. Galibert, C. Hitte, and T. Schiex,A comparative genome
approach to marker ordering, Bioinformatics23 (2007), no. 2, e50.

[6] R. Karp, W. Ruzzo, and M. Tompa,Algorithms in molecular biology-lecture notes. 1996, Department of
Computer Science and Engineering, University of Washington, Seattle, WA.

[7] B. Servin, S. de Givry, and T. Faraut,Statistical confidence measures for genome maps: application to
the validation of genome assemblies, Bioinformatics26 (2010), no. 24, 3035.

13


	Introduction
	Comparative genome approach to marker ordering
	Number of permutations with k breakpoints
	Extension to multichromosomal genomes
	Final steps to setting up the problem
	Using more than one reference

	Radiation Hybrid maps
	The Object
	Obligate Chromosomal breaks(OCB)
	Reduction to TSP
	Ambiguous entries

	Maximum Likelihood Estimation (MLE)
	Estimating breakage probabilities
	Reduction to TSP
	Utilising the comparative genome approach


	Statistical confidence measures
	Determining the confidence measure
	Constructing robust maps

	Discussion of the results
	Conclusion

