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Abstract

The study of genome maps is pivotal to understanding thessegof a genome.
There are many algorithmic techniques that are used to fisdst#guence using
data obtained from experimental results. This report geme of these tech-
niques, and their application to radiation hybrid maps.

1 Introduction

The ultimate goal when studying the genome of an organismabtain the complete
genomic sequence. One of the steps towards obtaining tpgnizme mapping. Thisis
the process of finding segments of the whole genome calktters and reconstruct-

ing the order that these markers occur in on the genome. iaake generally defined
as orthologous segments of the genome when compared wikntiven sequence of
another organism. While it is rare to find an exact one-toyoapping between these
genomic segments in the two organisms, two closely relatganmsms may have well

defined markers. This will be assumed to be the case for thefréee report. So, each
organism we consider will be assumed to have exactly one abpgch marker in its

genome.

The aim of genome mapping, as stated, is to reconstruct tlee tirat these markers
appear in. To do this, experiments are performed to obtairdeda that might provide
evidence as to what the true order is.

The data obtained from these experiments is used as thefmpuiany powerful
algorithmic tools which try to reconstruct the true ordehisTreport studies some of
these tools and the principles behind them. Throughoutgpert, the genome we are
reconstructing shall be assumed to be unichromosomal aedrli unless otherwise
mentioned.

Section[2 discusses how the marker order on a reference getambe used to
reconstruct the marker order in the new genome. Secflon (&éscon the analysis of
data obtained from a wet-experiment known as radiationitigation. Sectiol ¥4 ex-
pands on the methods discussed in sedfion 2 to construcof'gebd’ marker orders.
We also discuss some of the results that have been publisiregl these methods in
section[5.



2 Comparative genome approach to marker ordering

The following framework was provided by Faraut et @l. [5].€lhmodel uses a refer-
ence genome find the order of orthologous genes (markerggiated organism.

Let us identify the markers by the labdls, 2, ..., n}. An ordering of these mark-
ers is a permutation of these labels. In general, the ordering of the markers in a
sequenced genome of an organism is taken as reference, assigeed the identity
permutationr,.¢. This identifies each marker with a unique label.

To find the ordering of these markers in another genome, erpats are first used
to obtain evidence for the true ordering. We shall call thislenceX. So, using
Bayesian inference, our problem is to find the permutatien, an ordering of the
markers;r which maximizes the following probability.

Pr(X|n) - Pr(n)
Yoes, Pr(Xlo) - Pr(o)’

Since the denominator is a constant for every permutatiennay instead maximize
the right hand side of the following relation

Pr(w|X) =

(1)

Pr(r|X) < Pr(X|n)- Pr(n). 2

The termPr (X |) depends upon the outcome of the experiment, as well as paame
intrinsic to it. Estimating this quantity based on radiatioybrid experiments will be
part of the next section of this report.

The other termPr (7) can be naively take to bré;, which says that the prior on
each permutation is equal, or equivalently that each osdequally likely. Thus, the
optimal order only depends on the posterior.

Faraut et al. modelled the probability of an order as a famctf its evolution-
ary distance from the reference genome. The metric usedheasumber of adjacent
markers inr which were not adjacent im,.. ;. Thus, the metric is similar to the break-
point distance. However, the direction of the markers isingiortant, and so the
permutations are unsigned. In the report, we shall use thelirakpoint distancéo
denote this metric instead of the more classical definiticth® same. The occurrence
of a breakpoint between two markers was modelled using a&wisrocess. The pa-
rameter used for the process is the expected breakpoiahdsbetween the reference
genome and the proposed gene order.

Assume that some orderhas breakpoint distandefrom the reference genome.
In that case, the probability of the order will be given asdwek:

Pr(m) = Pr(m|myres)
= Pr(w|k) Pr (k). 3)

Then, equatior ]2 becomes
Pr(n|X) < Pr (X|n) - Pr(x|k) Pr (k). 4)

Since the occurrence of breakpoints is modelled as a Pogseess, the terrf?r (k),
which is the probability of observing breakpoints, is given b?%, where\ is the



parameter controlling the Poisson process. The other ®gimiply the probability of
observingr given that there are exactlybreakpoints. So,

1

Pr(n|k) = PR0L (5)

whereO,, (k) is the total number of permutations which are at breakpdstadcek
from the reference genome.

To maximize the right hand side &fl 4, it is clear that an ordigha low number
of breakpoints with the reference order will be preferrad this balances the poste-
rior probability due toX. This brings us to the combinatorial question of finding the
number of permutations at breakpoint distakdeom the reference genome.

2.1 Number of permutations with k& breakpoints

The problem of finding the number of permutations at a bregglistance of: from
the reference genome is solved by setting up a system ofresmas. These recur-
rences capture the possible scenarios when a genome of sizeis expanded to a
genome of size..

A segmenof a permutation is a maximal set of markers in the permutaicch that
all the markers in the segment are also adjacent in the refergenome. A segment
with a single marker is called asolatedmarker. Consider a permutation of length
n — 1, with & — 1 breakpoints with the identity. Now we proceed by induction.

(i) If the markern — 1 is at the end of the segment, and we add the marlkarthe
end, we will not create any breakpoints. So, the new pernomain» markers
will have k — 1 break points.

(ii) If the markern is inserted next to the marker— 1, but inside a segment instead
of at an end, then the new permutation will haviereakpoints.

(iii) If we insert the markern at the position of an existing breakpoint, we create one
extra break, and the new permutation hdsreaks.

(iv) If we insert the marken at the end of the permutation, such that the end is not
the markem — 1, the new permutation will havk breaks.

(v) If the markern is inserted between markeisi + 1 in a segment, such that
i+ 1 # n — 1, then the new permutation will have+ 1 breakpoints.

The position of the markes — 1, at the end of a segment or as an isolated marker, is
the only information required to construct the next set efipgations. Now, we define
the following quantities.

e I’ (k) =The number of permutations of sizewith k breakpoints, such that the
markern is isolated at the border of the permutation.

e /¢ (k) =The number of permutations of sizewith & breakpoints, such that
the markem is isolated somewhere in the middle of the permutation (hthia
border).



e S’ (k) =The number of permutations of sizewith k breakpoints, such that the
markern is part of a segment, and is at the border of the permutation.

e 5S¢ (k) =The number of permutations of sizewith k& breakpoints, such that the
markern is part of a segment, somewhere in the middle of the pernoutati

o O (k) = I? (k)+ St (k) =The number of permutations of sizewith k break-
points, such that the markeris at the border of the permutation.

o O¢ (k) =1I¢(k)+ S¢S (k) =The number of permutations of sizewith k break-
points, such that the markeris in the middle of the permutation.

Clearly, O¢ (k) + O (k) = O, (k). Using the initial valued} (0) = I5(0) =
S5 (0) = 0,5%(0) = 1, we can define the following recurrence relations by using
inclusion-exclusion.

I (k)= 0p_y (k=1)+20;_; (k1) (6a)
IFk)y=k-1)0p1(E=1)+(n—k)Op_1(k—2)—S; (k—1) (6b)
Sp (k) = O3y () (6¢)
Sp (k) = Ip_y (k) + 25y (k) + S5y (k) + 81 (k—1)+ S, _; (k—1) (6d)

Using these recurrences, it is easy to comput®al(k) for somen < N andk < N
is time quadratic inV.

2.2 Extension to multichromosomal genomes

While the recurrence relations presented above hold featirunichromosomal genomes,
it is easy to modify the same for multichromosomal genomesdd so, we first glue
together the chromosomes of the reference genome in sorspeuified order. This
gives us a unichromosomal genome, which can be labelledfasebéut the gluing
points are treated as breakpoints instead of adjacenc@s, &suming that the refer-
ence genome hadchromosomes, and the order under consideratiomhasarkers
from chromosome for 1 < ¢ < r, we notice that while adding markers, each time we
finish adding markers from chromosomand start adding markers from chromosome

_ th
i + 1, we will have to introduce a breakpoint. So, when we add(the- >~7_, n;

marker to the new order (note that this is not the identificatiumber of the marker,
but the step in which it is added to the new genome), where; < r, then we have
to make the following modifications to our recurrence relasi

1% (k) = 20,1 (k — 1) (7a)
IS (k)= (k=1)On 1 (k= 1)+ (n = k) Op 1 (k —2) (7b)
Sy (k) = S5, (k) =0 (7¢)

The final case says that if we are adding a marker from a newrasome, it is not
possible to create an adjacency.



2.3 Final steps to setting up the problem

Having calculated the probability of choosing the ordagiven the reference, we can
look at the following log-likelihood maximization problem

In Pr (7|X) = In Pr (X|r) + In [Pr (n|k) Pry (k)] + C, (8)

where(C arises from the normalization constant. This is clearlyiegant to the prob-
lem as stated in equatidd 4. The next step is to computer|k) for0 < k <n — 1,
and to find a least squares {it+ bk to In [Pr (w|k) Pry (k)]. After this reduction
is made, the problem is generally reduced to an instanceeoTf tavelling Salesman
Problem, as we shall see in the case of Radiation Hybrid nmepesdtion[B.

2.4 Using more than one reference

If there is more than one genome which supports the case forgering, then we
simply need to treat the two reference orders are indep¢ideach other, as shown
in figure [1&. Since the terms [Pr (7|k) Pry (k)] in equation[B are independent of
the position of the markers, and dependent solely on the euwftbreakpoints with
the reference genome, we can easily generalize this. Asguitinat the two reference
orders givento us are..s1 andm,.so (We can take one to be the identity without loss
of generality),

Pr (7T|7Tref1,7Tref2) = Pr (7T|k1) Pr (7T|/€2)PT>\1 (kl) PT‘)\Z (kg),

wherek; andk; are the number of breakpoints thahas withr,.. r1 andm,.. ¢2 respec-
tively, and\; and), are the controlling parameters of the respective Poissacegses
of introducing breakpoints. Using the recurrence relajdinese are easily computable,
and the least squares fit for both can be calculated.

In Pr(n|X) =InPr(X|r) 4+ a1 + bik1 + as + boks + C. 9

The process can also be extended when using more than tweneés.
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Figure 1: Using more than one reference



If, on the other hand, we wish to be more rigorous, and notrassthe indepen-
dence of the two reference genomes, we might wish to consaestructing an inter-
mediate ordering of the markers which is the most probatdlerarg based on the two
reference genomes, depicted in figliré 1b. Using Bayesiangnte, the two reference
orders will be conditionally independent of each otheregithe parent. Thus, we want
to find an ordefr;,,;.,- which maximizes the following probability.

Pr (T‘—refl |7Tinter) Pr (7Tref2|7rinter)
ZO’GSn Pr (777‘ef1|770)) (desn Pr (777‘ef2|770))

Note that there is no posterior evidence #gf,.,- apart from the reference orders. We
can then use this intermediate genome as the new referefiod the optimal ordef.

Pr (Winter|7rref177rref2) = (

3 Radiation Hybrid maps

The construction of a reliable order of markers on a chrommescor amapping of
the markerss an important step towards sequencing chromosomal DNAliaRan
hybrid (RH) mapping is a technique that is used to constmuch snaps, and estimate
the distance between the markers on the chromosome.

The experimental stage of RH mapping consists of irradjatie cells of the organ-
ism on whose chromosome we need to order the markers, amgfilngse cells with
healthy cells of another organism. The irradiation brealksttealthy chromosome of
the original organism at random intervals, into méi@gmentswhich are subintervals
of the original chromosome, and contains the markers inghiignterval. Fusing the
cells results in theescueof a subset of these fragments, by recombination with hgalth
cells. This createslaybrid clone whose chromosome can be tested for the presence or
absence of each marker.

The experiment is repeated several times, and providestbslata to analyze, and
with parameters that can be incorporated into the analyticalel that we adopt. The
algorithmic part of the RH process aims to deduce the modlylirder of the markers
on the original chromosome, given the retention patterh@htarkers, i.e. the absence
or presence of the markers on each hybrid.

The question of ‘most likely order’ is generally solved bylueing the problem
to a maximum likelihood estimation (MLE) setting, or by mmitizing the number of
obligate chromosomal breaK®CBs), as we shall explain later. Both these instances
can be further reduced to the travelling salesman probl€f8].[Methods to approach
the problem also include trying to construct a minimal wegghHamiltonian path[]2],
but we shall restrict ourselves to a high level discussiah@feduction of the problem
to a TSP, rather than focusing on the heuristics used to Ho&/ESP.

A variant of the maximum likelihood approach aims to order tharkers with
respect to some reference order. Furthermore, this appoaachbe extended to provide
a map distribution i.e. other possible maps that can have led to the radiatibrich
data, assuming uncertainty in the reconstructed order.

The following section introduces the object constructedfradiation hybrid data,
on which all these techniques can be applied. This shall bewfed by brief dis-



cussions of the minimization of obligate chromosomal bseand of the maximum
likelihood methods.

3.1 The Object

Assume that there wene independent hybridization experiments performed on the
same chromosome. This produeesybrids.

If we know that the original chromosome hadnarkers, we can check each hybrid
for the presence or absence of these markers. Assumingitnagrbrder of the mark-
ers, the presence or absence of the markers in these hyaridsecgiven in a matrix
X = (24j),,+n» Wherez;; is 0 if marker; is not present in hybrid, and1 otherwise.

For example, conside} hybrids with4 markers in the original chromosome. A
possible matrix would be:

1 2 3 4
hi /1 0 0 1
hay O 1 0 1
hs \O 1 1 0

The matrix construction described above is valid for hapl@rror free data. This
matrix can be modified for the following cases:

1. For diploid data, we get a matrix with entrigsl, 2, wherex;; is 2 if both copies
of the marker are rescued and found on the hybrid.

2. There may be typing (reading) errors, in which case we reayngertain whether
a certain marker is present or absent. Using the notatiorenfBor et al., these
entries will be depicted a&

It is easy to see that there at&/2 possible orderings of the columns. Typicallyjs
large, of the order of hundreds, or even thousands.

The assumption that markers that are close together witidithe same fragment,
i.e. there will be no break between them, means that we desirerdering of the
columns of the matrix that tries to group all this together. This leads to the first
optimization criterion.

3.2 Obligate Chromosomal breaks(OCB)

An obligate chromosomal break in a hybrid for a certain madkder is scored when-
ever al is immediately followed by &, or a0 is immediately followed by d while
traversing the corresponding row of the matrix. The OCBe&d¢orrthe entire matrix for
a given marker order is the sum over the OCB scores of eaclmybwidl. In the matrix
given before, there ar2 OCBs in the first row, and OCBs in total. Non-informative
entries in the matrix, i.e. those marked by *?’, do not coantdrds breaks, and changes
from0to? or1toO0 etc., is ignored while counting the number of OCBs.

Finding a column order with the minimum number of obligateocthosomal breaks
translates to finding a marker order in which the least nunadbeadiation induced
breaks have occurred. If there is an order with no obligaterolosomal breaks, then



the matrix, by definition, has the consecutive ones propétherwise, the problem
of optimizing the number of such breaks is performed by reduthe problem to an
instance of the TSP.

3.2.1 Reductionto TSP

Assume that we are given a matik = (x;;), .. of m hybrids and» markers, with
possible typing errors, but no diploid data. The matrix isdi construct a complete
graph, whose vertex set is the set of markers and a sepatat®s@rtexs. Then, the
following rules are used to weigh the edges.

1. The edges from to each vertex is given a weight 6f
2. The edge from a vertexto v is given the following weight:

# of entriesi in which z;,, andz;, differ by 1

“Y' " # of entries in which bothz;,, andz;, are not‘?’

The edge has a higher weight if there are more hybrids in wbidiz one of
markeru andv is retained.

Assuming we have full information, i.e. no non-informatamtries in the matrix, the
minimum number of obligate chromosomal breaks will-bdimes the optimal Trav-
elling salesman tour in this graph. Thus, the TSP solutighiggraph will minimize

the number of OCBs, and yield an optimal ordering of the marke

3.2.2 Ambiguous entries

In the case when there are ambiguous entries, the TSP sohaied not be optimal.
consider the following matrix:

1 2 3
e f1 7 1
|1 2 1
a1 21
halo o1
hs \0 1 1

In this case, the optimal TSP tour is given by the permutatiof, 2) of the markers,
but induces} breaks. The identity order, though, induces dhlyreaks.

This last case is generally claimed to be close to the acblitien, since most data
has low fraction of ambiguous entries.

3.3 Maximum Likelihood Estimation (MLE)

The second optimization criterion is to estimate an ordet #e distance between
the markers such that the probability of the resulting RHadgiven that order, is
maximized. This is called the likelihood of that map/ord&e introduce some notation
here that will be used in this section, as well as the othefsllmw it.



The probability of rescue or retentignis the probability that a fragment created
by irradiating the cells is recombined to form a hybrid. Theiableq will be used to
denotel — p, i.e., the probability that a fragment is not rescugds estimated by the
ratio of the number of’s in the hybrid data to the number d& and(’s. If the data is
fully informative, i.e. no ambiguous entries, then thishe tatio ofl’s to the size of
the matrix. The breakage probability; between two markerisandy is the probability
that a radiation induced break occurs between markad markey;.

Apart from these, we can also have error rates for falseigesihd false negative
observations, as well as factors that come into play whenomsider the ploidity of
the chromosome. For our purposes we shall examine only ttieod®used to analyze
haploid, error free data.

3.3.1 Estimating breakage probabilities

The first step in maximum likelihood estimation is to find thhedkage probability;;
between each pair of markers. For a single hyhgidwe can denote the possible cases
for the presence or absence of the markewsdj, and the probabilities associated with
each, as follows.

i ‘ 0 1
j

0 ‘ q (1 —0ip) bijqp
1 0i;qp p (1 —00q)

For example, both markeisand; will be absent on the hybrid if one of two cases
is satisfied:

1. Markeri is lost (probabilityy), and markey was on the same fragment (no break
probabilityl — 6;;).

2. A break occurred (probabili§; ;) and bothi and; are lost.

This gives us the first entry in the table.

Letngg denote the number of hybrids in which both markand; are not present,
n1o the number of hybrids in which only markeis presentpo; the number of hybrids
in which only marker; is present, anab;; the number of hybrids in which both are
present. Then the probability of observing the colurns) and (z;), wherel <
k < m, together, giver;; is equal to

Pr((zri) , (xx;) [055) = (q (1 = 055p))™ (Bi5qp)" ™ (p (1 — 035q))"" .

This probability is maximized when the derivative of thisntewith respect td;; is
zero. A quadratic polynomial is obtained, which can be soiwed;;, and the solution
chosen is one which lies {0, 1] and maximizes the probability.

Using this method, the breakage probability for every paimarkersi, j is esti-
mated. The probability thus maximized is the likelihood eéisig the columnsézy;)



and(zy;) together. The likelihood of observing a single colufan;), Pr (7 (1)), is
given byg™op™, wheren; is the number ot’s in the column, and. is the number of
0’'s. If we assume that the probability of observing a columdépendent only on its
immediate predecessor (i.e. the columns before it do netitf), then we can define
the two-point likelihood of an order of the markers as follows:

Pr(X|m) = Pr((x (1)) Pr((m(2)[ (x (1)) ... Pr((=®))|(x(n-1))), (10)

where each{r (7)) is the column of the marker in positiaras observed itX. Since
we need to find the marker order which gives us the greatebpility of observing
the dataX, we need to find an order which maximizes this quantity.

3.3.2 Reduction to TSP

The case of reducing the MLE problem to TSP is slightly mowelved than the case
of OCBs. The graph is the same complete graph on verticeiddid®y the markers
and a source vertex, which is a dummy marker. Before the iemte calculated, we
define transition probabilities between markers.

e The transition probability; from s to the market, is given by

t; = p"t/2q/?,

wheren; is the number of hybrids in which the markiés present, and, is the
number of hybrids in which it is absent.

e The transition probability;; from a market to j or vice-versa, is given by

tiy = (q (1= 045p)" (Bi5qp) "™ "2 (0 (1= 0,50))™"
where the definitions aofgg, 701, 710, 711 are the same as given before.

This definition of transition probabilities can be explditesing Karp et al.’s result that,
for a given permutatiorr of the markers, the product of the transition probabilittes
equal to the likelihood of that order of markeifs [6]. This efs as an exercise in the
original paper, and was proved in the paper by Aggarwal dboacompleteness [1].

To maximize the likelihood, we can minimize the negative-lidglihood. Thus,
we weight each edgg by — Int;; andsi by — Int;. Now, the solution to the TSP will
minimize the weight of the total tour, which maximizes theslihood, and the order of
traversal again gives us the most probable order.

3.3.3 Utilising the comparative genome approach

In section[2, we saw a method for introducing a prior on theedndg) of the markers
using a reference order. Faraut et al. used their own aplptoaattack RH-data sets.
The termin Pr (X|7) in equation[B is the taken to be the log-likelihood that we see
the RH-dataX for a given marker ordering. Using Karp et al.'s reduction, and the
linear regression fit discussed in sectfon] 2.3, the equatiduces to

In Pr (7T|X) =In tﬂ-(l)tﬂ-(Q)ﬂ-(l) . tﬂ'(n—l)ﬂ(n)tﬂ(n) +a+bk+C. (12)

Now, we change the weights to each edgas follows:

10



(i) Each edgesi shall be weighed-Int; — a/2.

(i) An edgeij shall be weighed-1Int;; — b x ~;;, where~;; is 0 if 4 andj are
adjacent in the reference order, andtherwise.

This modification in the weights of the graphs weighs the sdgeh that a TSP solu-
tion will maximize the probability of the order conditionah both the RH-data as well
as the reference order.

4 Statistical confidence measures

In section[2, we discussed the model used by Faraut et al.d@fprior distribution
for marker orderings. Servin et al.][7] used this informatio evaluate the uncertainty
in a constructed genome map. The essence of their work isgtaad of calculating a
specified order of the markers, they compute the probaslftr certain ‘good’ orders
which agree with some reference genome, and with the evideBased on these
orders, they construct what they caltdoust mapwhich captures the possible ordering
of the markers.

4.1 Determining the confidence measure

Servin et al. proposed a Markov Chain Monte Carlo approadstionate the confi-
dence measure in a constructed map. Recall equaiibns Blamdich, together give:

Pr(m|X) o< Pr(X|m) - Pr(n|meys) .

To compute the likelihood of an order means navigating through alll /2 possible
orders ofn markers. Instead, we would like to look at permutations #matsomehow
close to the permutation. The MCMC algorithm does this in two steps. The first step
is a Metropolis Hastings sampling step, which is performedecfor every iteration.
The second step is a Gibbs sampling step which is perfoemeiines, where: is the
number of markers.

Metropolis Hastings sampling of inversianBhe first step in the MCMC looks at the
map! (m,i,7), 1 <i<n-—1,i+1 < j <n,which is the permutation obtained
by inversion of the segment between markieasd; (i andj included) inr. For each

/

= I(m,i,j), the quantityQ (m,i,j) = Pr (X|7r') Pr (w'|7r,‘ef) is computed.
Using this, we get the following probability distribution:
Q (Tr? 7:/7-]./)

We sample an inversion from this probability distributi@md accept it with the fol-
lowing probability:

in (1 Pr(7'|X) Pr (7r|7r’))
" Pr(n|X)Pr(x|n) )’

11



So, there is a greater chance of accepting the inversiomi¢ieases the likelihood of
the orderr’.

Gibbs sampling of marker replacemefince the Metropolis Hastings step is run, the
Gibbs sampling step is rutm times when there are markers.T (r, i,i’) is defined
as the map in which the marker at positioim = exchanges places with the marker at
positioni’. This defines a probability distribution:

Pr(X|T (m,i,7")) Pr (T (m,4,) |7res)

Pr (i, X) = S Pr(X[T (w4, k) Pr (T (7,4, k) [res) (13)

wheren_; is the orderr with the marker at position removed. An iteration of this
step is completed by choosing an order from this distrilsutio

These steps are run after the comparative approach is usstiwct an initial order
7, and, after some ‘burning’ iterations, converge to somewth the neighbourhood
of 7.

Once the algorithm has run, we obtain a map distribution,aapdsterior proba-
bility associated to each order in this distribution. Thasethe confidence measures
for the maps obtained, i.e. the probability that the map egywith the data and the
reference.

4.2 Constructing robust maps

The maps constructed by the algorithm may number in the thaiss but since they
are all somehow ‘close’, these maps share various strigcte are interested in three
kinds of structures:

e Sequencesf markers, i.e. markers that are organized consecutivedyl maps.

e Sequences of sequencespmtasequencewhich are consecutive sequences in
all maps.

e Common intervalssets of markers that occur together, but not necessarily co
secutively in all maps.

Finding the sequences and meta-sequences in the ordelstigetg easy. The algo-
rithm of Bergeron et al. []4] can be used to find all the commadarirals between
the orders. These structures can then be arranged in theofoanPQ-tree (called a
metamayp, which is arobust map in the sense that the probability of finding these
structures in the true marker order is very high. The P nodds the probabilities
of concurrent order of the markers associated with them,thedQ nodes hold the
probabilities of each orientation of the associated matker

5 Discussion of the results
The method of Faraut et all|[5] was used to find an orderingetémnine chromosome

2 with 426 markers typed to obtain an RH dataset, using the human geasmaeef-
erence map. Each marker occurs on average 2ftékb. Using a Poisson constant of

12



1 for modelling the occurrence of breakpoints, the approaguwas in closer agree-
ment with the dog genome sequence than the order obtaineailsy TSP calculation.
The effect of the constant was judged to be minimal after Bxpnts on simulated
data.

The same dataset was used by Servin ef al. [7], only they 4&®charkers. The
map distribution constructed using the MCMC algorithm dstesl of over10000
maps. The main observation was that areas of conflict in tbensgructed map by
Faraut et al. and the true genome order were regions wheee attierings were seen
in the map distribution, which makes the case for a confidemeasure. In their own
words, "our method allows us to pinpoint regions where treeadly order disagrees
with an RH map order that is strongly supported by RH data’”. [7]

6 Conclusion

The report discusses some advances in the field of marketimgde genome maps, in
particular RH maps. The methods of Faraut and Servin areagnemeworks that can
be applied to the reconstruction of maker order from expenital data. Their methods
and results lean heavily on the framework provided by Karmgpg#wal and Ben-Dor
for reconstructing marker orderings from RH data, whiclizgs an elegant reduction
to the Travelling Salesman Problem. The question of usingertttan one reference
order to reconstruct the orders remains an open problenthédtamework seems to
be flexible enough to allow us to incorporate this.
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