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Abstract

A major topic in geometric group theory is the counting the number of subgroups of
finite index in a group. This ties into the classification of finite simple groups, as well as
classical geometric group theory, to culminate in a theorem similar in spirit to Gromov’s
theorem on polynomial growth of finitely generated groups. This short paper captures some
of the elementary results in this field.

1 Introduction

Let us associate the following function with a group G:

n 7→ an (G) ,

where an (G) is a natural number which denotes the number of subgroups of index n in G. This
is the subgroup growth function of G [1]. This function is well defined if the value of an (G) is
finite for all values of n ∈ N.

The study of the behaviour of this function was motivated by the need to classify infinite groups
by some invariant. Infinite groups with the same ‘type’ of subgroup growth are expected to show
similar properties, as we shall see later on. In turn, subgroup growth has been the motivation
for some major fields in group theory, such as strong approximation and linearity conditions
for linear groups. The completion of the classification of finite simple groups proved a major
turning point in the field, and a comprehensive theory of subgroup growth has been formulated
by the works of Lubotzky, Segal, Mann [2], Larsen [3] and Ilani [4], to name a few. However,
the tools used to analyze subgroup growth date much farther into the past. This paper is a
short compilation of the approaches to the theory of subgroup growth.

Section 2 introduces some notation, and a few concepts and results that shall be used through
the paper. After that, the sections are arranged roughly in order of decreasing rate of subgroup
growth. Section 3 considers groups that have superexponential growth rate, and in particular,
free groups. Section 4 then moves to characterize groups with exponential growth rates. Section
5 deals with one of the major theorems in subgroup growth and proves one direction of the same.
Section 6 ties in generating functions with subgroup growth. Through the sections, we have a
number of theorems and lemmas that are reused, and will be referred to according to their first
occurrence.
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2 Preliminaries

We first need some notation and a few definitions that will be reused liberally.

2.1 Definition and notation

We have already defined an (G) as the number of subgroups of index n in G. We can also define
sn (G), the total number of subgroups of index at most n in G. So, sn (G) =

∑n
i=1 ai (G). If G

is a finite group, we can define s (G) =
∑∞

i=1 ai (G), the total number of subgroups in G.

Let us consider the simplest example, that of the group of integers under addition, Z . It is
clear that an (Z) = 1 for all values of n, and sn (Z) = n. Of course, s (Z) is not defined, since Z
is an infinite group.

Let R (G) be the intersection of all finite index subgroups of G. Then, we quotient out R (G)
from G, and this will not affect the number of subgroups of any index n, which we can see using
the canonical map, i.e. an (G) = an (G/R (G)). This means that we need only study groups
with R (G) = {1}. Such groups are called residually finite [1].

A class of groups C is considered ‘good’ if it is closed under taking normal subgroups, quotients
and finite extensions (semidirect products). We can define an inverse system of surjective
homomorphisms on this class, i.e. for Ai, Aj ∈ C, we have Ai ≤ Aj (where ≤ denotes the
poset order, not inclusion) if and only if there is a surjective homomorphism φij : Aj 7→ Ai.
The inverse limit of this system is a subgroup of the direct product of the groups in C, and
every group that can be described such an inverse system of surjective homomorphisms over
C is called a pro-C group. If C is the set of all finite groups, then the inverse limit is called a
profinite group. Related to this concept is the following definition.

Definition 2.1. [5] The profinite completion of a group G, denoted by Ĝ, is the inverse limit
of the system G/N of all finite quotients of G by normal subgroups N of G.

The profinite completion Ĝ of G has a natural topology inherited from the product topology on
the system of quotient groups in the inverse system, which individually have a discrete topology.
This means that there is a continuous homomorphism i : G 7→ Ĝ, which takes g ∈ G to gN ∈ Ĝ.
The kernel of this homomorphism is the intersection of all finite index normal subgroups N in G.
So, if this intersection is {1}, then the map is injective. This means that residually finite groups
map as a dense subgroup into their profinite completion, and subgroups of G map to their
closure in Ĝ. So, the set of all finite index subgroups is in bijection with the open subgroups of
the profinite completion, and their index in the respective groups (G and Ĝ) is preserved.

We are interested in cases where an (G) is finite. This is at least true for all finitely generated
groups. Actually, this is true of all groups G which have a finitely generated profinite completion
Ĝ, since we can simply project via the homomorphism that we have discussed above, and work
on the profinite completion instead.

We also define aCn (G) and aCC
n (G) (respectively sCn (G) and sCC

n (G)) as the number of normal
and subnormal subgroups of index n (respectively index at most n), and mn (G) as the number
maximal subgroups of index n in G.
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2.2 Preliminary results

Consider a group G, and a subgroup H ≤ G, such that [G : H] = n <∞. So, we have a set of
n cosets of H, which we can label from 1 to n. Without loss of generality, let us label H as 1.
Then, G can act on the set of cosets {H, g1H, g2H, . . . , gn−1H} by the following action.

g 7→ g {H, g1H, g2H, . . . , gn−1H} for each g ∈ G,

and this gives us a map φ from the elements of G to the symmetric group Sn. Note that this is
a homomorphism, and G acts transitively on the cosets of H. Furthermore, the stabilizer of 1
under this action is the subgroup H itself, and this is the preimage of all the permutations that
fix the first element of the permutation, and permute the rest freely. So, StabG,φ (1) = φ−1Sn−1,
and for each such subgroup H of index n, we get (n− 1)! different transitive actions of G on
{1, 2, . . . , n}. Let tn (G) be the number of transitive actions. Then, we get our first principle to
count subgroups.

Proposition 2.1. [6, 7]

an (G) =
tn (G)

(n− 1)!
. (2.1)

If the actions are also primitive, i.e. if no single partition of {1, 2, . . . , n} is fixed, then the
subgroups corresponding to these actions are maximal. So, if pn (G) is the number of primitive
homomorphisms from G to Sn, then

Proposition 2.2. [7, 1]

mn (G) =
pn (G)

(n− 1)!
. (2.2)

Now, if G is finitely generated, with d generators, then the number of transitive homomorphism
to Sn is determined by the images of each generator. So, we expect an (G) ≤ n. (n!)d−1.

Let us consider the whole set of homomorphisms from G to Sn. Denote the total number of
such homomorphism by hn (G). We then get the following easy lemma.

Lemma 2.1. [8] For any group G

hn (G) =

n∑
k=1

(
n− 1

k − 1

)
tk (G)hn−k (G). (2.3)

Proof. Let hn,k (G) be the number of homomorphisms from G to Sn in which the orbit of 1
under the action of G is exactly of length k. In order to choose this orbit, we need to choose
k − 1 other elements from n elements, with 1 already chosen. Once we have chosen this, we
have tk ways to act transitively on this orbit. As for the other n− k elements, we can permute
them randomly, so we have hn−k ways of doing that. This gives us that

hn (G) =

n∑
k=1

hn,k (G)

=

n∑
k=1

(
n− 1

k − 1

)
tk (G)hn−k (G),

which finishes the proof.
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It would be nice to have a recursive formulation for an (G). So, we have the following corollary.

Corollary 2.1. [8, 4] For any group G,

an (G) =
hn (G)

(n− 1)!
−
n−1∑
k=1

hn−k (G) ak (G)

(n− k)!
(2.4)

Proof. We use Proposition 2.1 and Lemma 2.1 and simply replace tk (G) with ak (G) (k − 1)!
to get the result after some rearrangement.

We talked about finite quotients of groups while discussing the profinite completion. Often, it
is possible to reduce the case of counting subgroups in infinite groups to counting subgroups in
a finite quotient group. With this in mind, we also have the following two lemmas, which come
in handy while discussing exponential subgroup growth.

Lemma 2.2. [7, 1] If G is a finite group, and d is the number of generators needed to generate
G, then

sn (G) ≤ s (G) ≤ |G|d (2.5)

d ≤ log |G|, (2.6)

where log (x) is the logarithm to the base 2.

Proof. For the first part, the first inequality is trivial. The second follows from the fact that
if we have d choices of elements, we can generate every subgroup of G. Now, if at least one
subgroup of H needs d generators, then we have the following chain of finite groups, where each
successive Hi is generated by i generators.

|H1| [H2 : H1] . . . [H : Hd−1] ≤ |G|.

Since we cannot have index greater than 2 for each of these, we get |G| ≥ 2d, and the result
follows.

The second lemma is concerned with finite index subgroups.

Lemma 2.3. [7, 1] Let K be a subgroup of G with index l. Then, for each k, the number of
subgroups H of G, containing K, such that [H : K] ≤ k, is bounded above by lblog kc.

Proof. Since K ≤ H, we should be able to find a chain of subgroups H1, H2, . . . Hs such that
K ≤ H1 ≤ H2 ≤ . . . ≤ H. Now,

[H : Hs] [H : Hs−1] . . . [H1 : K] ≤ k.

This can be at most 2k, and the chain, therefore, is of length at most blog kc. To generate H,
we can choose all the elements of K, and add in elements x1, x2, . . . , xs. Note that we could
instead have multiplied those s elements by an element in K, and still generated a group in
which K has rank k. This can be done in at most lblog kc ways, proving our lemma.

Now that we have some tools at our disposal, we can look at actual classes of groups.
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3 Free groups

We mentioned as a footnote after proving Proposition 2.1 that if we can generate a group G with
d generators, we can define maps from G to Sn by mapping the generators to the permutations.
This gives us (n!)d such homomorphisms. Since the number of transitive homomorphism is
definitely less than this, we know from the proposition that an (G) ≤ n. (n!)d−1.

3.1 Just subgroup growth

Where free groups on d generators are concerned, we can say more.

Theorem 3.1. [9] For a free group G with d ≥ 2 generators,

an (G) ∼ n. (n!)d−1 (3.1)

mn (G) ∼ n. (n!)d−1 , (3.2)

where we denote asymptotic equivalence by ∼, i.e. f ∼ g if f/g → 1 as n→∞.

This means, in a sense, that almost all homomorphisms from the free group to the symmetric
group of order n! are transitive and primitive. This also means that the subgroup growth in
free groups is superexponential, as we shall establish in a corollary of this result.

Proof. First of all, since we are dealing with a free group, every homomorphism can be described
by the map of the generators. So, using the notation we have established, hn (G) = (n!)d. We
already have a recursive formulation for an (G), given in Corollary 2.1 [8]. So,

an (G) = n (n!)d−1 −
n−1∑
k=1

(
n− 1

k − 1

)
(n− k)d−1 ak (G).

Now, let us count the number of intransitive maps from G to Sn. So, we let the orbit of 1 vary
in length from 1 to n− 1, but never let it be n. Using the combinatorial argument given before
in Lemma 2.1, and the known bounds for tn (G) and hn (G),

n−1∑
k=1

hn,k (G) =
n−1∑
k=1

(
n− 1

k − 1

)
tk (G)hn−k (G)

≤
n−1∑
k=1

(
n− 1

k − 1

)
(k!)d ((n− k)!)d

= (n!)d
n−1∑
k=1

(
n− 1

k − 1

)
k

n

(
n

k

)−(d−1)

≤ (n!)d
bn/2c∑
k=1

(
n

k

)−(d−1)
.

Now, note that the number of intransitive homomorphism is the same as hn (G)− tn (G). Using
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this, and the fact that
(
n
k

)
≥ 2k−1n/2 as long as 1 ≤ k ≤ n/2,

hn (G)− tn (G) = (n!)d
bn/2c∑
k=1

(
n

k

)−(d−1)

≤ (n!)d
bn/2c∑
k=1

2−(d−1)

nd−12(d−1)(k−1)

<
4

n
(n!)d =

4

n
hn (G)

⇔ 1− tn (G)

hn (G)
<

4

n

⇒ lim
n→∞

tn (G)

hn (G)
= 1,

where the last limit follows from the fact that tn (G) ≤ hn (G). This proves that most homo-
morphisms from a free group to the symmetric group of order n! are transitive. Of course, this
also means that an (G) ∼ n (n!)d−1.

Analogously, let us now consider all the imprimitive actions of G on {1, 2, . . . , n}, i.e. there is
some non-trivial partition that is preserved. Let us consider such a preserved parition of this
set, T , such that each part has equal size. The size of each part, r, is given by n/|T |, and we
have the following usual conditions for partitions.

{1, 2, . . . , n} =
⋃
Pt∈T

Pt

Pi ∩ Pj = ∅ ∀ Pi, Pj ∈ T.

An imprimitive homomorphism will act on this partition and preserve some partition Pk. Let
us look at the automorphism group of these partitions. Since we are fixing them, the partition
members can only be permuted within themselves, so they are acted on by Sr. On the other
hand, we can map paritions transitively, by S|T |. So, preserving the paritions is simply an
automorphism from the group formed by the direct product of Sr’s to itself, giving us Sr o S|T |.
The action of G is a homomorphism from G to this automorphism group. Now we do some
basic counting. The number of partitions of the set into |T | parts of size r is given by first
selecting r elements, then r more elements from the rest, etc., and normalizing by |T |!, since we
do not consider the order in which these parts are chosen.

1

|T |!

(
|T |r
r

)(
(|T | − 1) r

r

)
. . .

(
r

r

)
=

n!

(r!)|T | |T |!
.

Also, the number of imprimitive homomorphisms is just tn (G)− pn (G). Using the same type
of argument as in the previous case,

tn (G)− pn (G) ≤
∑
|T ||n

n!

(r!)|T | |T |!

(
(r!)|T | |T |!

)d
< knn!

(
(r!)|T | |T |!

)d−1
< kn

(n!)d

nd−1

= kn
hn (G)

nd−1
,
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where kn is the number of divisors of n. This quantity grows as o (n) [10]. So, the number of
imprimitive homomorphisms tends to 0 as n→∞, which proves that mn (G) is asymptotically
equivalent to n (n!)d−1, using Proposition 2.2. This completes the proof of the theorem.

As stated before, there is an easy corollary to this result, which can be thought of as a charac-
terization of groups that have ‘fast’ subgroup growth.

Corollary 3.1. Every finitely generated free group has subgroup growth (and maximal subgroup
growth) of type nn.

Proof. Just notice that n! ≤ nn and n! ≥ nn/2. Since an (G) ∼ n. (n!)d−1 for any free group G
with d generators, the result follows.

Free groups are comparatively easy to deal with where subgroup growth is concerned, but it is
probably illustrative to notice that these are some of the easier proofs in this field. In short,
counting the number of subgroups is not as easy as in the example we did for Z.

3.2 Growth of subnormal subgroups

Let H be a subgroup of G. Then, a subgroup K CH is said to be a subnormal subgroup of G.
Our next theorem deals with the growth of finite index subnormal subgroups in a free group.
Here, we shall see how Schreier’s work on free groups as well as the classification of finite simple
groups plays a crucial role in studying subgroup growth.

Theorem 3.2. [11] Let G be a free group with d generators. Then, for all n,

aCC
n (G) ≤ n22(n−1)(d−1). (3.3)

Proof. We assume that G is not cyclic. If it were, then the result is trivial (recall example 2.1).
Let us now prove the following lemma.

Lemma 3.1. A d-generator group has at most 2nd−1 maximal normal subgroups of index n.

This is a consequence of the classification of finite simple groups.

Proof. The classification of finite simple groups leads to the conclusion that there are at most
2 finite simple groups of order n, and only 1 if n is prime. Now, let us take a finitely gener-
ated group G on d-generators, and consider surjective homomorphisms of the same into simple
groups of order n. Since there are at most 2 such groups, and since the homomorphism is
completely determined by the map of the generating elements, the number of such surjective
homomorphisms is 2nd. The kernel of such a homomorphism is definitely a normal subgroup,
and furthermore, this must be a maximal normal subgroup of index n, since the quotient is
simple.

The second concept we need is the fact that if n is not prime, then a simple groups has at least
n automorphisms. So, the actual number of homomorphisms, ruling out the automorphisms,
is 2nd/n = 2nd−1. In the case n is prime, then the group under consideration is the cyclic
group of prime order, and there are n−1 automorphisms. This means that the number of maps
is nd/ (n− 1), which is still less that 2nd−1. Since we know the kernel is a maximal normal
subgroup of index n, we have bounded the number of such subgroups by 2nd−1.

7



Now, we refer to a major theorem on free groups.

Theorem 3.3 (Nielsen-Schreier theorem). [12] If H is a subgroup of a free group G, then H
is a free group. Furthermore, if [G : H] = n <∞, and G is generated by d elements, then H is
generated by nd− n+ 1 elements.

In the interest of brevity, we shall not give a proof for this theorem, which is common in most
textbooks.

Now, we try to proceed by induction on n. If n = 1, then we have a degenerate case, and the
theorem is obviously true. Assume that n > 1, and that the theorem holds for all indices less
than n, and all finitely generated groups. Consider H CCG, [G : H] = n, and take a maximal
normal subgroup N E G such that H C CN . Let [G : N ] = r. Using Theorem 3.3, we know
that N is a free group, and it is generated by rd− r + 1 elements. Also, chaining together the
indices, we know that [N : H] = n/r. Now, if we consider N , and the subnormal group H of N ,
since n/r < n, we can apply the induction hypothesis, and we get that the number of subgroups
which are subnormal to N and of index n/r are at most (n/r)2 2(d−1)(n/r−1). We use Lemma
3.1 to bound the possibilities for N , and simply sum over all such N .

aCC
n (G) ≤

∑
r|n,r>1

2rd−1
n22(d−1)n

r22r(d−1)
.

Note that d ≥ 2 and r/2r−1 ≤ 1/2 for r ≥ 4. This means that we can decompose the sum as
follows: ∑

r|n,r>1

2. (2r)d−1

r22r(d−1)
≤ 1

2
+

2× 6

32 × 8
+
∞∑
r=4

1

r2
.

Using Euler’s theorem for the convergence of
∑∞

r=1 r
−2 to π2/6, we can bound this sum from

above by 1. So, aCC
n (G) < n22(d−1)(n−1), which concludes the proof.

Notice that while the number of subgroups of index n was growing as nn, the number of
subnormal subgroups is at most exponential.

3.3 What about normal subgroups?

What about them indeed? This is not a result that we shall expand on, but we provide it
here for the sake of completeness, and to sate the reader’s curiosity. Assume that we have a
free group G, finitely generated with d generators, and we want to find the number of normal
subgroups of index n in the same. Let us define λ (n) =

∑
li

, where li are the multiplicities of
distinct primes in the prime factorization of n. Eg. for n = 60 = 22.3.5, λ (60) = 2 + 1 + 1 = 4.
We then have the following theorem.

Theorem 3.4. [13] Let G be a free group on d generators. Then, for all n,

aCn (G) < n2(d+2)(1+λ(n)). (3.4)

The proof involves classifying the isomorphisms of d-generator groups of order n, and again
relies heavily on the classification of finite simple groups. Since λ (n) ≤ log n, this implies that
aCn (G) ∼ nlogn.
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4 Exponential subgroup growth

Let us first introduce two invariants. For a group G, define the following.

σ (G) = lim sup
log sn (G)

n
(4.1)

σ− (G) = lim inf
log sn (G)

n
. (4.2)

Notice that here we are considering sn (G) instead of an (G). If the invariant σ (G) is finite, then
sn (G) is judged to be growing at most exponentially. If σ (G) > 0, then we have exponential
subgroup growth, otherwise, i.e. when σ (G) = 0, we have subexponential subgroup growth.
What role does σ− (G) play? If we can prove that σ (G) = σ− (G) for some G, then we can say
that a group has some strict subgroup growth type, assuming the quantity is finite.

4.1 Characterizing groups with exponential subgroup growth

Let us also introduce a definition.

Definition 4.1. An upper section of a group G is a quotient A/B, where B C A ≤ G, and
[G : B] <∞.

Now, we consider a series of theorems, which are linked.

Theorem 4.1. [14] Let G be a finitely generated group, which avoids a certain finite group H
as an upper section, i.e. there is no upper section of G which is isomorphic to H. Then G has
at most exponential subgroup growth.

Note the direction of the theorem. It does not rule out the possibility of groups with exponential
subgroup growth that have upper sections isomorphic to all finite groups. This theorem is ‘raw’,
in the sense that it classifies a large number of groups having at most exponential growth.

We recall our definition of a ‘good’ class of groups closed under quotients, semidirect products
and normal subgroups, given in Section 2. Assume that C is such a class of finite groups, which
is a subset of the class of all finite groups. In the spirit of a profinite group, we can consider
an inverse system and look at the free pro-C group on d generators, F̂d (C). Now, if G is a d
generator group which avoids some finite group H as an upper section, then we can look at
its completion Ĝ in the profinite topology. This is just an image of F̂d (C), where C is a class
of finite groups that avoids H. The question now becomes, what sort of class is C? Let Ck be
the class of finite groups, k ≥ 4, which does not contain the alternating group Ak+1. Clearly,
C4 ⊂ C5 ⊂ . . .. At the same time, note that solvable groups have abelian quotients, and so
their quotients must avoid the alternating groups. If S is the class of all finite solvable groups,
S ⊂ C4.

We already established Ĝ as an image of F̂d (C), G being generated by d generators. Now, G
must lie somewhere in these ‘good’ classes of groups, i.e. it belongs to some Ck. Then, its
profinite completion Ĝ must be an image of F̂d (Ck). Conversely, if the profinite completion is
an image of this free pro-Ck group on d generators, then d avoids the alternating group Ak as
an upper section. Now, we can state the next two theorems.

Theorem 4.2. [14] Let C be a good class of finite groups, does not contain all finite groups.
Then, the free pro-C group on d generators F̂d (C) has subgroup growth of strict type 2n.
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But now, we already have a stratification of the class of all finite groups, by the inclusion chain
described before. So, if we can prove that both the class of solvable groups, and any class of
finite groups avoiding the alternating group Ak have a free pro-C group on d generators as an
inverse limit, such that the subgroup growth rate for this group is bounded, we are done. So,
the final form of the theorem, which is the form we shall work on, can be stated as follows.

Theorem 4.3. [15, 16] Let d ≥ 2 and k ≥ 4. Then

σ
(
F̂d (Ck)

)
= σ−

(
F̂d (Ck)

)
= (d− 1)

log k!

k − 1
(4.3)

σ
(
F̂d (S)

)
= σ−

(
F̂d (S)

)
= (d− 1)

log 24

3
. (4.4)

As a note before the proof, notice how free pro-C groups have an important role to play in this
theorem. The take away message after a rather long discussion will be this: if a group has
superexponential subgroup growth rate, it is very close to a free group. It needs also be said that
this is only particularly rigorous proof in this paper, and the length gives an idea as to why we
refrain from proving some of the results following this.

Proof. Let us first try to get an upper bound. Consider a ‘good’ class of finite groups, C.
Let Mt

C (n) be the set of maximal subgroups of Sn which lie in C and act transitively on
{1, 2, . . . , n}. Each member of the conjugacy class of a maximal transitive subgroup will also
be maximal transitive. This means that Mt

C (n) is a union of subgroup conjugacy classes in
Sn. Let us denote the number of conjugacy classes that we need to take a union of by ctC (n).
Also, we denote the order of the largest subgroup in Mt

C (n) by OrdtC (n). Our next step is the
following proposition.

Proposition 4.1. [14] Let G be a pro-C group generated by d elements. Then, for all n,

an (G) ≤ nctC (n)
[
OrdtC (n)

]d−1
.

Proof. We know from Proposition 2.1 that an (G) = tn (G) / (n− 1)!. Since G is a pro-C group,
if we consider a transitive map φ : G 7→ Sn, φ (G) will be a transitive C subgroup of Sn, and it
will be a subgroup of some maximal subgroup H in Mt

C (n). So, if we wanted to count tn (G),

tn (G) ≤
∑

H∈Mt
C(n)

Number of homomorphisms from G to H

≤
∑

H∈Mt
C(n)

|H|d

≤ ctC (n) max
H∈Mt

C(n)

{
n!

|H|
|H|d

}
≤ n!ctC (n)

[
OrdtC (n)

]d−1
.

The last two steps follow from the fact that the size of the conjugacy class of a subgroup H
of Snis given by [Sn : NSn (H)], which is less than n!/|H|. Then, we just use the formula for
counting an (G) given the number of transitive homomorphisms to complete the proof.

After this, we need two results about the symmetric group and about permutation groups in
general, which we shall state without proof.
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Proposition 4.2. [15] For a ‘good’ class of groups C, S ⊆ C ⊆ Ck, there exists a real number
c which depends on C, such that ctC (n) ≤ nc for all n.

Proposition 4.3. [11] Let CCk be the class of finite groups such that, for each G ∈ CCk , and for
all n > k, we can find a chain

{1}EG1 EG2 E . . .EGl = G,

such that each Gi is maximal in Gi+1, but no Gi+1/Gi ∼= An for any n > k. Take C ⊆ CCk ,

k ≥ 4, Then, OrdtC (n) ≤ (k!)(n−1)/(k−1).

Once we have these two results, combining with Proposition 4.1, we get

an (G) ≤ n.nc (k!)(n−1)(d−1)/(k−1)

⇒ log sn = log
∑
i≤n

ai (G)

≤ log
∑
i≤n

nc+1 (k!)(n−1)(d−1)/(k−1)

≤ n (d− 1) log (k!)1/(k−1) + (c+ 2) log n

⇒ σ (G) ≤ (d− 1) log (k!)1/(k−1) .

Now, to get the upper bounds, we set C to be the class of solvable groups, S, with k = 4, and
C = Ck.

For the lower bound, consider the class C of finite groups such that Sk ∈ C, S ⊆ C, and k ≥ 4.
We then try to prove by induction the following inequality for all t ≥ 0.

Lemma 4.1. For t ≥ 0,

log akt
(
F̂d (C)

)
≥ κ (d− 1)

(
kt − 1

)
− ct2,

where κ = log k!/ (k − 1), and c = (log k)2.

For the base case, consider t = 1. Consider all homomorphisms from the free group on d
generators, Fd to Sk. The total number of homomorphisms is given by (k!)d, and if we consider
k large enough, we know that ak (Fd) ∼ k (k!)d−1, from Theorem 3.1. Now, the kernels of all
homomorphisms from Fd to Sk must intersect in some subgroup X. This means that every
k-index subgroup in Fd must contain X. If we consider the quotient group Fd/X, this must be
a finite group in C, since Sk ∈ C, and so we can find a surjective homomorphism from F̂d (C) to
Fd/X. This gives us

ak

(
F̂d (C)

)
≥ ak (Fd) ≥ (k!)d−1

⇒ log ak

(
F̂d (C)

)
≥ (d− 1) log k!

= (d− 1)κ (k − 1) ,

proving the case for t = 1. Now assume the following is true.

log akt−1

(
F̂d (C)

)
≥ κ (d− 1)

(
kt−1 − 1

)
− c (t− 1)2 .

At this point we again turn our eyes to Schreier’s work on free groups, and in particular, to his
formula for pro-C groups.
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Theorem 4.4 (Schreier’s formula for pro-C groups). If H ≤ F̂d (C) is an open subgroup of index
l in F̂d (C), which is the pro-C completion of the free group Fd on d generators, then H is a free
pro-C group on l (d− 1) + 1 generators.

This means that each open subgroup of index kt−1 in F̂d (C) is isomorphic to F̂m (C), where
m = kt−1 (d− 1) + 1. Such a subgroup will contain at least (k!)m−1 subgroups of index k, using
the base case. Also, we know, through Lemma 2.3, that the number of subgroups of F̂d (C) of
index kt−1 which contain a given subgroup of index kt is at most kt log k. So,

akt
(
F̂d (C)

)
≥ 2n (k!)m−1

kt log k
,

where n = κ (d− 1)
(
kt−1 − 1

)
− c (t− 1)2. Simple manipulations now give us

log akt
(
F̂d (C)

)
≥ κ (d− 1)

(
kt − 1

)
− ct2,

which finishes the induction.

Now, for arbitrary n > 1, choose t and r carefully, to satisfy k2t ≤ n < k2(t+1) and rkt ≤ n <
(r + 1) kt. If we map F̂d (C) onto a finite cyclic group, of order n/r, we can see that an open
subgroup of index r exists. So, H ∼= F̂r(d−1)+1 (C) by Schreier’s theorem again, and from the
previous result,

log akt (H) ≥ κ (r (d− 1) + 1)
(
kt − 1

)
− ct2

≥ κ (d− 1)
(
n− r − kt

)
− ct2.

Note that ct2 ≤ c (log n)2 / (2 log k)2, and r ≤ kt+2 ≤ k2n1/2. Using these inequalities, and also

knowing that sn

(
F̂d (C)

)
≥ an (H), we get

log sn

(
F̂d (C)

)
≥ nκ (d− 1)−O (n)

⇒ σ−
(
F̂d (C)

)
≥ (d− 1)

log k!

k − 1
,

where we get the last part by substitution the value of κ. Then, we apply the same trick of
choosing C to be Ck and S to get the bounds and finish the proof.

4.2 An example for exponential subgroup growth

Having done all this work, let us look at an example to illustrate exponential subgroup growth.
For some prime p, and some positive integer t, consider the group Gt = CpoCpt , where Ck denotes
the cyclic group of order k. We can instead look at this group as the semidirect product AoCpt .
Now, if we consider Cpt ∼= 〈x〉 and A ∼= Fp [〈x〉], then A is a group algebra considered as an 〈x〉
module, or a Fp vector space of dimension pt. Using q-binomial coefficients, it is easy to note that

the number of subspaces in this vector space which have dimension pt− 1 is
(
pp

t − 1
)
/ (p− 1),

and these are just subgroups of index pt+1. We can form an inverse system by mapping Gt+1

to Gt for all t, and take the inverse limit to get a pro-p group on two generators, isomorphic to
Cp o Z/pZ.

Now, if we consider the infinite group G = Cp oC∞, we can map this onto Gt for all t by adding
a cyclic relation. The pro-p completion of this group is the same as the inverse limit that we
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got in the previous case. If we fix some c such that 1 < c < p1/p
2
, and if we want to count

the number of subgroups of index n such that pt+1 ≤ n < pt+2, then apt+1 (Gt) is, as counted

before, greater than pp
t−1, which, by the inequalities, exceeds cn.

The reason we are interested in this example is that this is a lower bound in the growth rate of
a large class of groups which are not free.

5 Polynomial subgroup growth

Here, let us review what is probably the most famous theorem in geometric group theory.

Theorem 5.1 (Gromov’s theorem). [17] A finitely generated group has polynomial growth if
and only if it is virtually nilpotent, i.e. it contains a finite index nilpotent subgroup.

Here, the term ‘growth’ refers to growth of words using a finite set of generators. The question
is, how can we extend this to subgroup growth? For one thing, groups do not need to be
finitely generated to make sense of their subgroup growth. However, if we do restrict ourselves
to finitely generated groups, what can we say about groups with ‘slow’ subgroup growth? Here,
we have another remarkable theorem.

Theorem 5.2 (Polynomial Subgroup Growth theorem). [2, 18] Let G be a finitely generated
residually finite group. Then G has polynomial subgroup growth if and only if it is virtually
solvable of finite rank, i.e. it contains a finite index solvable subgroup which is finitely generated.

The theorem is very similar in spirit to Gromov’s theorem. However, there are a few major
differences. Most importantly, this is not a classification of all groups with polynomial subgroup
growth. Indeed, there are classes of finitely generated profinite groups which have polynomial
subgroup growth, and these may be the completion of non-finitely generated groups. The
theorem, though, is quite powerful in its own right.

The proof of this theorem is quite involved, and we prove here only one direction, that virtually
solvable groups of finite rank have polynomial subgroup growth. The proof of the other direction
proceeds by first showing that a finitely generated linear group over a field of characteristic zero
which is not virtually solvable does not have polynomial subgroup growth. Then, groups with
a weak form of polynomial subgroup growth are classified as groups that have minimal upper
sections of some finite rank, i.e. there is an upper bound on the size of their generating set.
This result depends crucially on the classification of finite simple groups. It is this weak form
of polynomial subgroup growth which is then extended to imply polynomial subgroup growth.

Proof. We begin with a definition.

Definition 5.1. A derivation from a group G to a G-group H is a map δ : G 7→ H such that

δ (x.y) = yδ (x) y−1δ (y) .

The set of all derivations from G to H forms an abelian group if H is a G-module. We are
interested in the largest size of the set of derivations, der (G,H). As long as we are dealing with
finitely generated groups, and finitely generated quotients, if we want to get an upper bound
on the size of the set of derivations from a finite quotient G/N to the normal subgroup N ,

der (G/N,N) ≤ |N |d,
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where d is the size of the generating set of G/N . This result comes from simply mapping the
generators. The second thing we note about derivations is that a derivation from G/N to N
defines a semidirect product complement for N in G. Now, we have the following proposition.

Proposition 5.1. [1] For a group G, and a normal subgroup N of finite rank in G,

an (G) ≤
∑
t|n

an/t (G/N) at (N) td,

where d is the size of the generating set of G/N . If G/N is a finite quotient, then

sn (G) ≤ sn (N)n|G/N |

Here, we prove only the first part of the proposition.

Proof. Consider H ≤ G, such that [G : H] = n. Then, we can use the second isomorphism
theorem to say that NH/N ∼= H/ (H ∩N). Assume [N : H ∩N ] = t, and let us look at the
normalizer of the group H ∩N (call it A) in NH. We can use the second isomorphism theorem
again, to say A/ (A ∩N) ∼= NH/N , and this must be a subgroup of G/N .

If we want to count H now, we are looking at complements to N in G. At the same time,
H/ (H ∩N) is a complement to (A ∩N) / (H ∩N) in A/ (H ∩N). Using the previous results
on derivations, the maximum number of derivations from A/ (A ∩N) to (A ∩N) / (N ∩H)
can be estimated. First, (A ∩N) / (N ∩H) has size at most t. The number of generators of
A/ (A ∩N) is less than the number of generators needed for G/N , since it is isomorphic to
NH/N ≤ G/N . So, the number of derivations is bounded by td, where d is the number of
generators of G/N . Since the size of (A ∩N) / (N ∩H) is at most t which means that the
choices for H ∩N is at most at (N). On the other side, NH has an/t (G/N) choices. Now, we
just sum over all possibilities for t. This proves the first result.

The next result we need concerns nilpotent groups, and gives us an automatic bound on the
growth rate of subgroups in nilpotent groups.

Lemma 5.1. [1] If G is a finitely generated nilpotent group with d generators, then

an (G) < nd

sn (G) < n1+d.

Proof. We prove the result for finite quotients, and it extends to the whole group. So let G be
a finite group. Let p be a prime. If H is a subgroup of G with index p, then it is normal, and
we can find a surjective homomorphism φ : G 7→ Cp with kernel H. These homomorphisms
can be completely defined by the image of the generators, and so we can find pd − 1 such
homomorphisms. So, ap (G) < pd. For any other subgroup of index n = kp, every such
subgroup must be contained in a subgroup K of index p. Assume that ak (G) ≤ kd as our
induction hypothesis. Then, akp (G) ≤ ap (G) .max[G:K]=p ak (K). So, an (G) < nd. To get the
bound on sn (G), just sum an (G) over all n.

Now, we use the previous lemma and Proposition 5.1 to prove the next result.

Proposition 5.2. [1] If a group G has a chain {1} = Gk CGk−1 C . . . CG0 CG where each
Gi/Gi+1 is nilpotent, finitely generated by di elements, and G/G0 has finite order l, then

sn (G) ≤ nl+k+
∑

i di
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Proof. Since Gi/Gi+1 is nilpotent of finite rank, we get an (Gk−1) < ndk−1 . Assume that
an (Gi) < nk−i−1+dk+dk−1+...+di+1 . Using Proposition 5.1, we get

an (Gi−1) ≤
∑
t|n

an/t (Gi−1/Gi) at (Gi) t
di

≤
∑
t|n

(n/t)di tdi+1+di+2+...+dk+k−1−itdi

≤ ndi
∑
t|n

tdit−ditdi+1+di+2+...+dk+k−1−i

< ndi+di+1+...+dk+k−i

⇒ an (G0) < nk−1+
∑

i di

⇒ sn (G0) < nk+
∑

i di .

Now, using the condition that sn (G) ≤ sn (N)n|G/N | to prove the proposition.

And finally, we just note that such a chain exists for every virtually solvable group with the
solvable subgroup being finitely generated, which concludes the proof.

In Section 4, we discussed an invariant σ (G). There is a corresponding invariant that one may
wish to study for polynomial subgroup growth. This invariant, denoted by α (G), can be defined
as

α (G) = lim sup
log sn (G)

log n
.

For some simple abelian groups, such as Zd, finding this is comparatively straightforward. We
use Proposition 5.1 to prove that sn (G) ≤ n.sn (N) for a normal subgroup N of G. This means
that, for Zd, we get a subgroup growth rate of nd, and the invariant is just d. The natural way
to look at this is to look at all the subspaces of Zd of index 1, and recursively compute the
subgroup growth rate.

6 The Zeta function

Since we are counting the number of subgroups of finite index, and we already have a recur-
sive formulation (Corollary 2.1), one might be tempted to encode the counting sequence as a
generating function. The obvious choice may be an ordinary generating function,

AG (x) =
∑
n≥1

an (G)xn.

However, for groups with polynomial subgroup growth, we have a different choice. Consider the
following Dirichlet series:

ζG (s) =
∑
n≥1

an (G)

ns
. (6.1)
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Hark back to the old example on Z. In that case, an (Z) = 1 for all n. So, we get

ζZ (s) =
∑
n≥1

1

ns
,

which is just the Reimann-Zeta function. This in itself is no surprise, since we have formulated
it by definition. Similarly, we can do the same for other groups. What information can we
extract from this, though? Suppose we have a group with polynomial growth, α (G) = c. Then,
the Dirichlet series given above converges for < (s) > c, and it is analytic on the half-plane
where this condition is satisfied.

Our next result looks at nilpotent groups in light of their zeta functions.

Proposition 6.1. [1] The zeta function of a nilpotent group G can be given by

ζG (s) =
∏

p prime

∑
i≥0

api (G)

pis
. (6.2)

Proof. Note that a finite nilpotent group isomorphic to the direct product of its Sylow subgroups.
We replace any infinite nilpotent group by a finite quotient of the same. Choosing a subgroup
H of G, we see that this subgroup must be isomorphic to the direct product of the intersection
of H with each Sylow subgroup of G. So, we first get that, for n = pl11 p

l2
2 . . . p

lk
k ,

an (G) =
∏
pi|n

a
p
li
i

(G) .

Now, since we are dealing with generating functions, we can encode the number of subgroups
of some index in a p-group of order pt by

ζG (s) =
∑
t≥0

apt (G)

pts
,

and multiplying all these together just counts the total number of subgroups.

Finally, another motivation for studying the properties of these zeta functions, the proof of
which is not given here.

Theorem 6.1. [19] For Zd,

ζZd (s) = ζ (s) ζ (s− 1) . . . ζ (s− d+ 1) . (6.3)

7 Conclusion

The methods discussed above are by no means the only ones used to analyze subgroup growth.
Of particular interest are probabilistic methods that are used to study profinite groups. Any
topic on groups is essentially incomplete unless one has studied the implications of the same
on p-groups, and a large body of work has been done on subgroup growth in these, as well as
on pro-p groups, a flavour of which we saw in the example on exponential subgroup growth in
Section 4.2.
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Subgroup growth is a comparatively unwieldly topic to cover in just a few pages, mostly because
of the sheer number of concepts used. In that sense, this is not a complete or comprehensive
review of the subject, and instead aims to be a somewhat gentler introduction than the papers
and books listed in the reference, mostly to provide a taste of the work that has been done.
The field is still strewn with a variety of open problems, and as shown in the last section, it is
also of interest from a combinatorial and number theoretic perspective.
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