
Variants of the Consecutive Ones Property:
Algorithms, Computational Complexity and Applications to

Genomics

by

Ashok Rajaraman

M.Sc., Simon Fraser University, 2011
B.Tech., Indian Institute of Technology Roorkee, 2009

Dissertation Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

in the
Department of Mathematics

Faculty of Science

c© Ashok Rajaraman 2015
SIMON FRASER UNIVERSITY

Spring 2015

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Ashok Rajaraman

Degree: Doctor of Philosophy (Mathematics)

Title of Thesis: Variants of the Consecutive Ones Property:
Algorithms, Computational Complexity and Applications to Ge-
nomics

Examining
Committee:

Chair: Dr. Jonathan Jedwab
Professor, Department of Mathematics

Dr. Cedric Chauve
Senior Supervisor
Professor, Department of Mathematics

Dr. William S. Davidson
Supervisor
Professor, Department of Molecular Biology and Biochemistry

Dr. Bojan Mohar
Supervisor
Professor, Department of Mathematics

Dr. Tamon Stephen
Supervisor
Associate Professor, Department of Mathematics

Dr. Cenk Sahinalp
Internal/External Examiner
Professor, Department of Computing Science

Dr. Lucian Ilie
External Examiner
Professor, Department of Computer Science, University of West-
ern Ontario

Date Defended: 15 January 2015

ii

iii

Partial Copyright Licence

ABSTRACT

Genome mapping problems in bioinformatics can be modelled as problems of finding se-
quences of vertices in hypergraphs, subject to consecutivity constraints. These problems
are related to the consecutive ones property, a well-studied structural property on binary
matrices. Many variants of this property have been introduced to include subtleties in the
model, such as upper bounds on the number of times a vertex may appear in a sequence,
the distance of the input from having the property, and confidence values for the consec-
utivity constraints. Most problems involving these variants are intractable, and efficient
solutions call for restrictions on the structure of the input, exponential time algorithms, or
approximations. The following document discusses these problems, from both a theoretical
perspective, and from the genomics point of view.

We encounter two main classes of problems, divided into models which account for re-
peated elements in genomes, and those which do not. Orthogonally, we divide the problems
into decision and optimization questions. For models with repeats, we discuss when the
given input can be used to reconstruct the genome map of interest, and if we can discard a
minimal set of encoded consecutivity information from the model to obtain an input which
can be used to reconstruct this genome map. We also discuss the problem of ambiguity
introduced by repeats, and introduce the concept of repeat spanning intervals in order to
address them. We show that the problem of optimizing over the set of repeat spanning
intervals is NP-hard in general, and give an algorithm when the intervals are small. In
models without repeated elements, we discuss the problem of optimization by finding a
solution that minimizes the distortion in the consecutivity information, by generalizing the
concepts of bandwidth and minimum linear arrangement to hypergraphs. We design ap-
proximation algorithms for two versions of the latter problem, with an approximation ratio
of O

(√
logn log logn

)
.

Finally, we provide details of implementations of some of the methods developed for
genome mapping and scaffolding on ancestral genomes. We include results on real data for
the genome of the Black Death agent, and for ancestral Anopheles mosquitoes.

Keywords: consecutive ones property; genome reconstruction; repeat ambiguity; vertex
ordering; approximation algorithms

iv

DEDICATION

To Pāti and Pāpu.
I hope you would have been proud.

v

ACKNOWLEDGEMENTS

There is usually a set order or presentation in a dissertation where acknowledgements are
concerned. The body of the document itself may be scrambled beyond recognition, but this
section is held sacrosanct. So I shall resist my inner impulse to shock and awe, and respect
the time-tested traditions of academics the world over.

In prime position would have to be my senior supervisor, Cedric, who made sure that
I started and finished the work being presented in this document. All graduate students
procrastinate; it is only the supervisor who holds the ability to make them work past it. I
would also like to thank him for introducing me to mathematical problems in bioinformat-
ics. His approach to these problems provided an orthogonal viewpoint to my own. Every
research project requires a good foil, and an important part of my graduate studies was
spent in his office bouncing ideas off each other. This, of course, is besides the academic
and financial support that he was generous enough to provide me.

I could not have done half the work I have if it were not for my wonderfully patient
collaborators. Brad, Eric, Jáno, João, Murray and Yann had to put up with what I suspect
were frequent and frustrating mistakes on my part, not to mention paranoia about the
validity of proofs, code and experiments. So I tender my apology for being a trying colleague.

In a similar vein, the other members of my supervisory committee, Willie Davidson,
Bojan Mohar and Tamon Stephen, took an interest in the progress I made, and were avail-
able to discuss the topics I was working on. Between them, they cover a vast breadth of
knowledge and experience, and provided useful suggestions during my time here.

I owe a lot to the Pacific Institute for the Mathematical Sciences and the Dean of
Graduate Studies Office at SFU, who provided most of the funding through my time here.
Thanks to them, I was able to focus on the research topics with little worry as to my
financial position as a graduate student. I would also like to add to this list the Department
of Mathematics, who have occasionally provided me with teaching positions, and the various
course coordinators I have worked with: Petra, Justin, Brenda, Keshav and Elena.

Staying with the Department of Mathematics, a very sincere thanks to all the great
people associated with it, faculty, staff and graduate students. I had a great time, and
enjoyed working with them. Not to mention the free cookies and coffee at seminars, and
the daily coffee routine with my office mates: Bamdad, Jeff, Lee and Will.

Going farther back in time, a very sincere thank you to the ‘Lords’, people who I know
will mock me for it, needing no gratitude between friends. Their first words when I told
them I am going into mathematics was to tell me I was crazy. Which were immediately
followed by them telling me that its the best decision I had ever made.

Finally, to my family, Amma and Appa, Anna and Manni and little Surabhi, to whom
I owe far more than I can ever give back, and always have my eternal love. Thanks for
everything.

vi

Contents

Approval ii

Partial Copyright Licence iii

Abstract iv

Dedication v

Acknowledgements vi

Table of Contents vii

List of Tables x

List of Figures xi

Notation xiii

I Computational Genomics and Mathematics 1

1 Introduction 2
1.1 A quick overview of computational biology 3
1.2 The basics of genome structure and organization 4
1.3 Genome maps and mapping problems . 6
1.4 A framework for reconstructing palaeogenomes 12
1.5 Contributions in this dissertation . 16
1.6 A note to the readers . 17

2 Background and preliminaries 18
2.1 Representing genome maps . 18
2.2 Hypergraphs and binary matrices . 21
2.3 Properties on binary matrices and hypergraphs 25
2.4 Defining the problems . 29

vii

II The Consecutive Ones Property with Multiplicity 30

3 Genome maps with repeats 31
3.1 The problem with repeats . 31
3.2 Repeat clusters and repeat spanning intervals 33
3.3 Deciding the existence of a genome map with repeats 34
3.4 Optimizing to get a genome map with repeats 37

4 The existence of genome maps with repeats 41
4.1 Including repeat spanning intervals . 41
4.2 Fixed parameter tractability of realizability 50
4.3 Improving decision algorithms . 56

5 Partial optimization problems on genome maps 57
5.1 Partial optimization . 57
5.2 Tractability . 59

6 Optimization on repeat spanning intervals is hard 70
6.1 Hardness of optimization . 70
6.2 Fixed parameter tractability . 81
6.3 Can we do better? . 89

III Vertex Orderings in Hypergraphs 90

7 Overview of vertex ordering problems 91
7.1 Motivation . 91
7.2 The gapped C1P problems . 92
7.3 Vertex ordering problems in graphs . 94
7.4 Generalizing to hypergraphs . 97

8 Approximating vertex ordering problems on hypergraphs 105
8.1 Spreading metrics and `22–representations 106
8.2 Cumulative stretch . 107
8.3 Spread . 119
8.4 A note on the bandwidth generalizations . 120

IV Applications: Software and Results 121

9 A package for ancestral genome map reconstruction 122
9.1 ANGES: Ancestral genome mapping ignoring repeats 122

viii

9.2 Applications and extensions . 125

10 Scaffolding ancient contigs 126
10.1 Ancient DNA: challenges and solutions . 126
10.2 Methods: FPSAC . 127
10.3 Scaffolding the Black Death genome . 132
10.4 Subsequent work . 138

11 Reconstructing Anopheles genomes 139
11.1 Context and overview . 139
11.2 Data: 16 Anopheles genomes . 140
11.3 Confirmation of the species tree . 141
11.4 Reconstructed ancestral gene order with ANGES 142
11.5 Genome rearrangements in the Anophele phylogeny 143
11.6 FPMAG: Using FPSAC techniques in ANGES 145
11.7 Observations . 148

V Conclusion 151

12 Conclusion 152
12.1 Summary of contributions . 152
12.2 Extending this work . 155
12.3 Final thoughts and comments . 157

Bibliography 159

Appendix A Pseudocode for algorithms in text 176
A.1 Algorithm for Lemma 4.1 . 176
A.2 Algorithm for Theorem 4.1 . 176
A.3 Algorithm for Theorem 5.1 . 176

Appendix B Some concepts and results from computational complexity 180
B.1 Definitions and fixed parameter tractability 180
B.2 The hardness of 3SAT(2,2) . 181

Appendix C Primer on semidefinite programming 183

Appendix D Polynomial time algorithms for minimum cumulative stretch 185

ix

List of Tables

Table 11.1 Extant anopheles genomes . 141
Table 11.2 Anopheles rearrangement rates . 145
Table 11.3 ANGES vs FPMAG . 147
Table 11.4 FPMAG results on Anopheles data 149

x

List of Figures

Figure 1.1 Genome evolution . 4
Figure 1.2 Genome and chromosomes . 5
Figure 1.3 Inferring markers . 13
Figure 1.4 Inferring copy numbers . 14
Figure 1.5 Inferring ancestral syntenies . 15

Figure 2.1 Mixed model genome map . 20
Figure 2.2 A problem instance . 24
Figure 2.3 The consecutive ones property . 28

Figure 3.1 Problems due to repeats . 32
Figure 3.2 Repeat spanning intervals . 34
Figure 3.3 b-matching . 39

Figure 4.1 Replacing repeat spanning intervals 43
Figure 4.2 Instance decomposition . 46
Figure 4.3 Repeats to non-repeats . 51

Figure 5.1 Vertices not in intervals . 62
Figure 5.2 Optimization reductions . 66

Figure 6.1 Variable gadget . 72
Figure 6.2 Clause gadget . 73
Figure 6.3 Clause cycles . 74
Figure 6.4 Unoriented reduction gadgets . 82

Figure 7.1 Gaps in a binary matrix . 93
Figure 7.2 Tucker patterns . 100
Figure 7.3 Tucker patterns in hypertrees . 101
Figure 7.6 Laplacian matrix . 102

Figure 8.1 Divide-and-conquer scheme for spreading metrics 111

Figure 10.1 Segmentation procedure . 129

xi

Figure 10.2 The Yersinia species tree. 133
Figure 10.3 Chromosome of the Black Death agent 135

Figure 11.1 Reconstruction of ancestral Anopheles genome maps using ANGES 142

xii

Notation

N Set of natural numbers
Z,Z≥0 Set of integers, and those which are greater than or equal to 0

R,R+,R≥0 Set of all real numbers, those which are positive, and those
which are greater than or equal to 0

[n] Set {0, . . . , n− 1}
bxc Largest integer smaller than x (the floor of x)
dxe Smallest integer larger than x (the ceiling of x)
|S| Size of a set S

x, xi A vector, and the ith component of the vector
1n The all 1’s vector in Rn

M,mij A matrix, and the entry in M at the ith row and the jth column
x ∨ y Logical OR operation between binary variables x and y
x ∧ y Logical AND operation between binary variables x and y
x,¬x Logical negation of the binary variable x
Σ∗ Set of all linear sequences over the alphabet Σ

All logarithms in the text are taken to base 2, unless stated otherwise.

xiii

Part I

Computational Genomics and
Mathematics

1

Chapter 1

Introduction

Modern genetics has been characterized by fast and cheap acquisition of reasonably high
quality data [46,139,166,192]. Compared to 20 years ago, the amount of data available to us
is quite extraordinary. With an ever improving understanding of the working of genetics,
such data has become an invaluable source of information in many fields in molecular
biology1.

From a computational point of view, it is important to have better, faster frameworks
in place to deal with the massive amounts of data being made available for each of these
problems [93,169,187]. In order to interpret the data, there are many challenges to overcome:
statistical modelling of the data, storing genomes that are billions of nucleotides long,
developing algorithmic techniques etc.

Computational biology evolved to address the unique computational challenges posed
by genetic data. The field seeks to model and infer quantitative driving factors which can
explain biological, possibly qualitative data arising from the study of genomes. There are
a number of questions that fall into its ambit.

• What factors drive evolution? Is there a mathematical model that explains the pattern
of evolution which shaped today’s genomes?

• What does the genome of an organism actually look like? Where are the genes and
other functional elements on the genome, and how are they organized?

• What are the driving genetic factors for diseases?

These are but a few broad questions which have attracted the attention of numerous re-
searchers in the field. They tie into the understanding of evolution, the explanation of
disease susceptibility and pathogeneticity, and other major topics in biology that have deep
roots in genetics.

1We assume that the reader is familiar with the basic concepts in genetics: that of the DNA molecule,
genes and the genome.

2

1.1 A quick overview of computational biology

Computational biology as a field has been involved in more than merely genetic data. It
refers to the broad range of computational tools used in almost any sub field of biology,
such as modelling biological systems [153], or studying brain function [136]. Our interest
lies in the application of computational methods to genomics.

The last three decades have been particularly significant in two respects: the large-
scale availability of a genetic data, and the computational resources at hand to analyze
them. The development of BLAST [5] may be considered to be a turning point in the way
computational genomics was approached. This was one of the first readily available tools
that could handle genome sequence data with relative efficiency.

Since then, a lot of effort has been put into developing time and memory efficient
software for many problems in genomics [110, 196, 209, 214]. Side-by-side, many concepts
from theoretical computer science have made their way into the genomics community, and
the rich exchange of ideas has benefited both fields [2, 18,19,20,184].

It is provident that computer science became an established research area around the
same time as the new developments in genetics. As a consequence, researchers can now call
on massive computational resources in order to analyze and interpret data [16, 103, 126].
However, such analysis is limited by theoretical limits on computability, and effective limits
on the computational power available. In order to analyze data, we need a mathematical
construct, a model for the data. But operations within the model may not allow efficient
solutions, and researchers are forced to sacrifice at many levels: the accuracy of the eventual
output of their models and the processes, the computational costs in terms of time and
memory used, or even the biological relevance of the computational output. Indeed, what
the mathematical model predicts as the optimal solution to a formal problem may be far
removed from the biologically correct solution. At the same time, it is necessary to know
which problems are computationally hard: the hardness of a problem can point to the
direction needed to be taken to address it, via heuristics, approximations or computational
power. It also isolates the complexity in the model, and allows us to draw a correspondence
between the biological features being modelled and their effect on problem complexity.

The aim, then, is a delicate balance of model accuracy and practicality. It is a balancing
act that has been mastered to some effect [37, 51, 145], but with growing computational
resources and a burgeoning repository of data, every model has to be updated at an ever
increasing pace. The dissertation may be seen as an exercise in this task: the development,
analysis and application of a model for a specific purpose in computational genomics.

3

1.2 The basics of genome structure and organization

One of the main motivations for the work in this dissertation is the organization of genetic
material in genomes. Knowledge of the structure of the genome carries a lot of value.
It is predicted to be an important indicator of various properties of an organism, such
as pathogeneticity in microorganisms [32], the robustness of crops to droughts [213], and
neurological and cellular functions in organisms [194].

Figure 1.1: An illustration of how genome organization evolves in certain mammals [151].
Each linear segment indicates a chromosome at that species in the tree. The human chromo-
somes are coloured with a single colour each. Genome segments in non-human chromosomes
are coloured according to the human chromosome in which they have a homolog, i.e. there
is a genome segment in the human chromosome which is the same as the one indicated
in the other species, up to small variations. The degree of multicoloured chromosomes in
a species gives a rough idea of how different the genome organization is compared to the
human genome.

A second motivating factor for the dissertation is the understanding of the evolution of
genomes [63]. Genome evolution is a complex, incompletely understood process. At the
nucleotide level, evolution can take place by changing, deleting or inserting a nucleotide in a
genome sequence. But, on a large scale, evolution occurs through change in genomic segment
organization. Large parts of the genome may be deleted from one part of the genome, only
to be reinserted elsewhere. Such segments may be duplicated through evolution, or deleted
altogether. Genomic segments may even be reversed during evolution. Figure 1.1 provides

4

(a) The nuclear human genome. (b) The human mitochondrial DNA.

Figure 1.2: A representation of the chromosomes in the human genome. Figure 1.2a repre-
sents all 46 linear chromosomes in the main human genome [162]. Of these, there are two
copies of 22 chromosomes. Figure 1.2b, taken from Chial and Craig [47], shows the human
mitochondrial DNA, an example of a circular DNA molecule. Note the coloured segments
on the molecule; these are markers that have been recognized to correspond to genes.

an illustration of genome organization evolution in some mammals. The operations involved
in genome evolution are complex, and there are various models which are used to explain how
a genome may evolve [10,19,79]. What is certain is that understanding genome organization
is as important to understanding evolution as single nucleotide substitutions. To that effect,
we now briefly discuss the main details of genetic material organization.

The genome of an organism can be visualized as a sequential organization of genomic
segments. This presupposes that we have well-defined genomic regions, which we will call
markers. Markers are linear DNA sequences which are inferred to occur in the genome. One
may think of markers as a proxy for genes in the genome. The exact definition of a marker
is usually made on a case by case basis, as we shall see in the following sections. The major
difference in each case is a question of scale: sometimes markers are defined as very short
genome segments, while other times they may be large DNA sequences composed of many
of the short segments.

Markers in a genome are organized into a set of sequences, which are called chromosomes.
Chromosomes may be a set of linear sequences, as in most multicellular organisms including
humans, or may be a single circular sequence, as in many bacteria. Figure 1.2a shows the
set of linear chromosomes found in humans.

Apart from chromosomes, there may be small circular DNA sequences present in certain

5

parts of the cell. When these sequences are present in mitochondria, locations in eukaryotic
cells that convert chemical energy from food into usable energy, the DNA sequence is called
the mitochondrial DNA or mDNA. An example is provided in Figure 1.2b. In bacteria,
however, there may be other circular DNA sequences present in the cell. These sequences
are called plasmids.

Genome organization evolution, once markers are suitably defined, is characterized by
certain operations on genomes. A few such basic operations are illustrated below.

1. Markers in an ancestor may be duplicated, inserted or deleted in the course of evolu-
tion.

2. Contiguous sequences of markers in the ancestor may be moved to another location
within the genome sequence. This includes movement from one chromosome to an-
other.

3. A contiguous sequence of markers may also be reversed within a single chromosome.

The process by which these events occur is hard to determine. For example, the move-
ment of a contiguous sequence of markers may also be due to the sequential deletion of
the markers from one location followed by sequential insertion of the same markers into the
location at which the contiguous sequence is observed to have moved. In the absence of pre-
cise details of evolution, computational biologists often fix a model according to which the
genome evolves, and base their inferences on the properties of this model [21, 82, 184, 217].
However, the mechanism of evolution will not be an important topic of discussion in this
manuscript.

1.3 Genome maps and mapping problems

The title of this document mentions the term ‘genomics’. The problems and methods pre-
sented here are primarily aimed at taking an algorithmic viewpoint to the basic question of
visualizing genome organization, given limited data. Briefly put, the aim is to take a set of
DNA sequence elements, which form the markers, and find their ordering and orientation
along chromosomes of interest. These genomic segments may be genes, or physical loca-
tions defined either experimentally or through some computational processes. The order
constructed by this procedure is called a genome map.

Constructing a genome map is an iterative procedure. Once we find a genome map of
a certain genomic region, we can combine this with other maps on the same genome in
order to create a larger, more complete map. This procedure of combining limited map
information into larger maps is called genome mapping2.

2Note that ‘genome mapping’, in a modern context, often refers to the process of aligning reads or contigs
to a genome sequence. Our use of the term here is motivated by historical reasons, recalling the concept of
physical genome maps.

6

At a fundamental level, all the problems we discuss can be thought of as extensions of
the classical genome mapping problem. But they are usually classified by the scale at which
the map construction is taking place, and the nature of the available data. Each problem
can be broken into a two-part pipeline: data acquisition, and the mapping procedure.

Data acquisition. In order for us to get into the algorithmic questions at hand, we first
need data which can be suitably represented in a mathematical model. The first piece of
information is a set of well-defined genomic markers, which, as stated before, are linear
segments of DNA which are inferred to appear on the genome of interest. There are a few
different sources for finding genome segments that can be arranged into a genome map,
differing by the exact mapping problem being encountered. In each case, the data given
either defines, or is processed in order to define genomic markers. It is the organization of
these markers on the genome of interest that we wish to reconstruct.

A common occurrence in genomes is the presence of duplicated sequences of nucleotides.
If there is a large duplicated sequence, it is likely that the duplication was part of an
evolutionary process, rather than de novo creation of the same sequence twice in the genome.
This sequence might be inferred as a marker, and the number of occurrences of the marker
on the genome is called its copy number. A marker with a copy number greater than 1 is
often called a repeat. In order to get a complete picture of the genome organization, we
need to associate each marker with a copy number, and find a genome map in which every
marker appears at most as many times as its copy number. Repeats, we will see, pose
unique challenges to genome mapping problems.

Obtaining the copy number of a marker is not an easy problem. Since we do not have the
genome sequence at hand, the only way we can get an idea of the copy number is through
the process of defining the markers itself. But it is hard to differentiate between 2 different
occurrences of the same marker on a genome, because we usually do not know the locations
of the DNA sequences defining the markers on the genome. We will discuss how to infer
copy numbers for markers in palaeogenomics later in this chapter.

The other important piece of information which is needed in a mapping problem captures
how the markers are arranged on the genome of interest. This is represented as sets of
markers, which are understood to have been present consecutively on the genomic sequence.
This synteny information, representing the colocalization of markers on the genome, serves
a guiding window. If we are able to see the immediate neighbourhood of a marker, or have
a set of mutually overlapping markers, we may have an idea of where the marker should be
placed in the genome. The principle is that we should be able to piece together the entire
genome map using such information.

There are many ways of finding which markers are colocalized on the genome of interest,
i.e. we have methods to determine the neighbourhood of the markers. Such information can
be inferred through experimental techniques (eg. hybridization experiments [167]), as well

7

as by employing computational techniques (eg. identifying ‘common intervals’ [43,110]). We
elaborate on some of these techniques, and the import of the data, later in this chapter,
with examples.

Mapping procedure. From the point of view of this manuscript, the mapping proce-
dure is the main topic of discussion. Data can be extracted using both experimental and
algorithmic techniques, depending on the source and the paradigm employed. But in order
to efficiently use this data to obtain a genome map, one has to take into account possible
errors and missing data. The methods we discuss concern two problems: how do we check
if the data is error-free, and how do we best optimize the data if it contains errors, while
making sure that it conforms to a number of constraints imposed by the genome structure.

We highlight here various types of mapping problems commonly encountered in compu-
tational genomics, and the data available as input to each of them. We also briefly discuss
some techniques to acquire such data in order to give the reader a feel for the general scope
of the techniques presented in the manuscript.

1.3.1 Physical mapping

In physical mapping, the genomic segments are defined as probes on a genome, short DNA
sequences that are extracted from the genome. Apart from this, we are given clones, longer
genome segments which might contain many probes expected to occur close together on
the genome. It is possible to know if a probe is contained in a clone using experimental
techniques. The problem is to find the ordering and orientation of the probes on the
source genome, while making sure that the order of the probes is consistent with their
order within each clone containing them. The order reconstructed is called a physical map.
Early approaches to investigate the chromosomal organization of genomes relied on the
computation of such genome maps [2, 144], and such maps are still being constructed [61].

In physical mapping, the markers are defined as probes extracted from the genome [119],
and the clones define synteny information between the markers. Following this, we wish to
find a genome map in which every probe appears, possibly with some copy number restric-
tion. A further restriction is that the neighbourhood of a probe in the map must match
the neighbourhood defined by the clones. Synteny information, which is clones containing
a set of probes, in this case can be obtained through hybridization experiments [2]. Such
experiments also allow the definition of the probes as particularly short sequences obtained
through the experiments.

1.3.2 Genome assembly

Modern sequencing techniques on genomes focus on finding many short DNA segments
called reads. Since these reads are often very short, they may occur hundreds of times

8

on the genome being sequenced, and they may overlap. These reads are combined, using
the overlap information, into larger, contiguous DNA sequences called contigs [214]. The
process of combining reads into contigs is called genome assembly. Ideally, the goal of
genome assembly is to find a single large contig, representing an entire chromosome. In
practice, it is more common to find a set of contigs, which often overlap, and are subjected
to further processing.

The availability of fully assembled genomes is key to understanding the functional orga-
nization of genomes, as well as the processes that govern their evolution. With the develop-
ment of modern sequencing technologies, we are flooded with a large amount of data [193],
and the challenge has been to develop genome assembly frameworks. Such frameworks,
like the de Bruijn graph [145, 173] and the string graph [158], form the basis for most
modern assemblers [160, 174]. In turn, assembled genomes prove to be useful in furthering
more assembly, mapping and scaffolding projects [94]. This cascade of information is highly
beneficial to the genomics community at large.

There are two major paths taken in genome assembly. Sometimes, reads extracted
directly from the genome of interest must be assembled into contigs. If this is the first time
that such reads have been made available, or if previous assemblies are judged to be very
poor, there is no template which tells us what the genome looks like, and the reads must
be assembled de novo. On the other hand, if there is a usable template present, one can
use this as a guide for how the reads must be placed. This forms the basis for reference
guided assembly algorithms. Both de novo assembly [121, 125, 126] and reference guided
assembly [189] using short reads are important topics of research in modern genomics.

For assembly problems, markers can be defined as short reads, which need to be as-
sembled into contigs [116, 145, 159]. For example, they may represent reads in an overlap
graph [157], or k-mers in the de Bruijn graph approach [108,214]. Synteny information can
be extracted from long read information [57,121,143,196], or, in the case of reference guided
assembly, through alignments onto the reference genomes [214]. However, algorithms used
for assembly are often based on different theoretical concepts from those we will discuss.

1.3.3 Genome scaffolding

We stated that contigs are the end products of genome assembly. These are relatively large
DNA sequences that are inferred to lie on the genome of interest. Contigs can be linked to
obtain even larger DNA sequences, perhaps even an entire chromosome. Such linking can
be done using data such as paired-end sequence information. Paired-end reads consist of
two sequences of similar length sequences from different ends of the same DNA molecule,
the sequences being separated by some bases in between. Information like this allows us
to infer which contigs occur next to each other on the genome, which of them overlap etc.
The process of orienting and ordering contigs on the genome is called scaffolding, and every

9

continuous order of contigs obtained is called a genome scaffold. One would also like to
predict the sequence between two consecutive contigs in a scaffold, and if these contigs
overlap.

For scaffolding problems, the markers are used to represent contigs [107], which we wish
to organize into a large genome scaffold. Synteny information is obtained by using mate-
pair libraries [12, 33, 66, 89, 107, 180, 183], existing genome maps to which we can map the
contigs [127], or comparison with one or several closely related genomes [94, 106, 118]. The
last method is one which we will encounter again, albeit for a different problem.

1.3.4 Palaeogenomics

Another challenge that computational genomics is faced with is the prediction of the genome
maps of extinct organisms. The problem here is that DNA decays rapidly, and ancient DNA
sequencing is accompanied by high error rates, and is often highly fragmented [25]. One
way around this is to use the genomes of the extant descendants of the organism under
consideration [170]. This is the idea behind the distinction between de novo techniques
and comparative techniques. The field of comparative genomics seeks to find information
about a genomes, or many genomes, by studying genomes that are closely related to it.
These genomes are used as references against which the data can be compared, and which
can be used to construct the genome map. The principle behind the application of this
field in palaeogenomics is an elementary hypothesis in evolution: two genomes belonging to
organisms which are sufficiently close from an evolutionary perspective must have conserved
features. Comparative methods play a vital role due to the absence of good quality data,
which renders most de novo techniques moot (for a rare exception, see [62,67]).

The reconstruction of the organization of ancestral genomes using extant genomes has
received great interest during the last few years, due to the increasing number of sequenced
and assembled genomes and to major methodological advances. Most reconstruction tech-
niques follow one of two paradigms.

Global parsimony. The principle of global parsimony is to assume that genome evolution
occurs through a set of evolutionary events. For these purposes, a genome is considered to
be a string of markers. The objective is to find a set of ancestral gene or marker orders that
minimizes the total number of such events required to obtain the observed extant genomes.
This defines a combinatorial model of evolution, which admits a computational analysis of
genome evolution.

The class of events, which act on a given genome to yield a new genome, are generally
called genome rearrangements. Such events were originally based on real-life evolutionary
events such as chromosome fission and fusion, but the repertoire of events has grown to
include, among other events, reversal, transposition, translocation, duplication, loss, inser-
tion, the double-cut-and-join [82] and the single-cut-or-join [79]. These need not be true

10

evolutionary events, but they are used as proxies to determine the evolutionary distance
between genomes. Some of these events do not change the content of the genomes, i.e. the
input genome and the genome it evolves into vary only in the marker order and orientations.
However, since genome content may indeed vary through evolution, events like insertion,
loss and duplication are regarded as important additions to a model [36].

The distance from one genome to another depends on the events allowed in a given
model. After fixing the combinatorial model of evolution, we can define the following
problems.

1. Genomic distance: Given two genomes, compute the minimum number of operations
needed to transform one genome into the other.

2. Genome median: Given three different genomes, find a fourth genome such that the
sum of the genomic distances from this genome to the other three is minimized.

3. Small parsimony: Assume we are given a phylogeny (a binary tree), where each leaf
is labelled with an extant genome. Compute a labelling of the internal nodes with
genomes such that the sum over all edges of the distance between two genomes at
adjacent nodes is minimized.

4. Large parsimony: Given a set of genomes, compute a phylogeny (a binary tree) with
the input genomes at the leafs such that the small parsimony score is minimized.

Global parsimony has been studied for a long time, and there are many results on
the tractability of such methods [75, 79, 184], as well as intractability results [31, 198]. In
particular, problems other than genomic distance are intractable for most models of global
parsimony [82]. Furthermore, even distance problems become intractable when events which
change genomic content are included [27, 36, 210]. Recently, tractability results have been
extended to include whole-genome duplication events [109,185].

Beside the mathematical study of such techniques, there has been considerable work
done using these techniques in order to reconstruct ancestral genomes [21,26,88], including
those for the rosid phylogeny [217], and for coffee [56]. The main drawback of these methods
is that they generally do not consider the reconstruction of ancient genomes with repeated
markers. As stated before, very few results exist on the inclusion of duplications, insertions
and deletions in the underlying models outside of whole genome duplications [109], other
than a few heuristic approaches [73], and limited results [27].

We do not study global parsimony based approaches in this document, though it is
important to keep them in mind as an alternative approach to ancestral genome recon-
struction.

Local parsimony. The alternative to global parsimony is the model-free, local parsimony
approach to ancestral reconstruction [135]. In this method, we try to reconstruct a single

11

ancestor of interest, while keeping the exact model of evolution hidden and employing no
optimization criterion based on evolution at the level of the data set. This approach has
gained a lot of support, since it allows comparatively efficient reconstruction algorithms for
ancestral maps [1,17,38,43,135,152]. It has recently been used on a number of datasets for
reconstructing ancestral genomes [155,164].

Palaeogenomics using the local parsimony approach forms the main motivation for the
problems we address in the manuscript, and we will expand on the approach we take to it,
and how we obtain the data in the next section.

1.4 A framework for reconstructing palaeogenomes

The framework we use to address questions in palaeogenomics is a comparative, local,
model-free approach. This approach [19, 135], focusses on the reconstruction of a single
ancestor in a phylogeny using the genome sequences of several closely related extant species.
Furthermore, it does not rely on a model for the evolution of the ancestral genome into
the reconstruction procedure. Techniques that include such a model are often aimed at
reconstructing more than one ancestral genome, minimizing some well-defined genomic
distance over the phylogeny [217]. On the other hand, the model-free approach operates
at a local scale, without defining a genomic distance measure. Such a technique has been
modified and adapted for various purposes, especially ancestral genome mapping [17, 43]
and scaffolding [177].

The process, as before, is to first get the data, and then proceed with the mapping
procedure. In this case, the preferred method for extracting data is to use the comparative
approach. This assumes that we already have some processed input data- the genomes of
extant species related to the palaeogenome we wish to study, and the phylogeny of these
species, including the ancestor, in the form of a species tree. In the context of our work,
the species tree is usually obtained through sequence comparison techniques [150]. We do
not consider the actual problem of obtaining phylogenetic information, but make note of
the fact that this information is independent of the syntenic information we seek to use to
reconstruct the ancestor.

Using this input, we will explain how to obtain the marker and synteny data in the
following subsections. This is followed by a short description of the mapping procedure.

1.4.1 Obtaining data: markers and copy numbers

The genome mapping problem, we stated, was to find an ordering of genomic regions along
the chromosome(s) of a genome of interested. In the case of ancestral genome reconstruction,
they may be defined as evolutionarily conserved regions in closely related extant genomes,
including descendants. Such regions may be obtained through whole genome alignment of

12

Figure 1.3: Inferring genomic markers through multiple sequence alignment. The linear
sequences shown represent chromosomes of different but closely related species. Coloured
regions represent loci which have been inferred to be homologous to loci in other species.
The gradient of the colour indicates directionality of the sequence found with respect to
an agreed upon reference. This is an idealized setting; in real data, there may be partial
alignments, overlapping alignments, and mismatches.

extant genomes [43, 135, 170], the analysis of gene families [14, 38], or by sequencing the
ancestral genome [177].

Example. In evolutionary genomics, readily coming by high quality sequence-level infor-
mation for ancient genomes is complicated by the high rate of DNA decay. As a result, any
data we extract through direct sequencing is quite error prone. This problem is bypassed
by using comparative methods for obtaining data. One of the many ways to define markers
in ancestral genomics is via multiple sequence alignment of the extant genomes. This is
a standard and particularly useful comparative technique, since it does not require infor-
mation about the ancestral genome apart from its phylogeny. The alignment recognizes
regions on the extant genomes that are similar to each other. Using suitable filtering steps,
such as choosing alignments having high identity and long length, it is possible to define
ancestral markers [60], as exhibited in Figure 1.3.

Ancestral copy numbers can be found by assuming a parsimonious evolutionary scenario.
Figure 1.4 shows a classical way of inferring the copy numbers of a marker in an ancestor,
once the markers are defined. The number of copies of a marker in the extant species
is known through the sequence information available for them. For the ancestor, the copy
numbers may be calculated by minimizing the number of evolutionary gain-loss events along
the branches of the species tree [52].

1.4.2 Obtaining data: co-localization information

For ancestral genomes, phylogenetic information again provides the basis to define syntenies
between markers. Using the extant genomic sequences, and the locations of markers on these
sequences, it is possible to use parsimony or probabilistic methods to infer candidate sets
of markers that are expected to appear consecutively on the ancestor [43, 110, 170, 177]. It

13

Figure 1.4: Inferring copy numbers using parsimony on a phylogeny. The number of copies
of the blue marker in the extant species are labelled at the leaves of the phylogeny. The
two trees show alternative evolutionary scenarios, one in which there are a single loss (red
arrow) and gain (green arrow) of a marker copy, and one in which there are two losses (red
arrows).

is even possible to use the phylogenetic information to include confidence measures for the
inferred sets [135].

Example. For ancient genomes, we can use comparative methods in order to extract
colocalization information from related extant genomes. We treat a possible adjacency
between two markers as a binary variable. We know whether this adjacency does or does
not occur in each of the extant species. Then, we use traditional parsimony to infer if the
homologous ancestral markers were also adjacent in each of the ancestral genomes.

Larger syntenic information between markers can also be inferred through comparative
techniques. Often, if we are considering a synteny consisting of three or more markers,
instead of looking for a precise ordering of the markers in the synteny, we are interested if
the same synteny is present in the ancestor up to internal variations in marker order. In
this case, we treat the set of markers in the synteny as a binary variable of interest, rather
than the exact ordered synteny itself.

In order to infer long range information, we need to use more complicated, but never-
theless still polynomial time algorithms on strings [18, 188]. Such algorithms vary between
applications, and can also take into account the copy numbers of the markers on the extant
species. This is followed by parsimonious inference of the binary syntenic characters [43].

The inference of ancestral syntenies is illustrated in Figure 1.5, in which the inferred
syntenies at an ancestral species are marked in the tree. It is also possible to use probabilistic
techniques to infer syntenies [42].

14

Figure 1.5: Inferring ancestral syntenies using Dollo parsimony. The coloured arrows are
markers, with the direction of the arrow representing the orientation of the markers in the
genomes. The immediate neighbourhood of the markers on the extant genomes is shown at
the leaves. A synteny is inferred to be present at the ancestor if there are 2 extant species
which contain the corresponding extant synteny such that the evolutionary path between
them contains the ancestor. Sometimes, the synteny is preserved up to a change of order
of the markers within it. Such syntenies are marked by dotted boxes, indicating that the
order of the markers is not known.

1.4.3 The mapping procedure

Mapping ancestral genomes corresponds to the problem of finding a set of one or more
sequences of the ancestral markers, with each marker appearing at least once and at most
as many times as its copy number. These sequences should have the following properties.

1. The sequences should agree with the predicted genome structure. This means that
if we expect the ancestral genome to be circular, as in the case of bacterial genomes,
we wish to obtain a single circular sequence. On the other hand, in the case of linear
genomes, such as mammalian genomes, we would expect the ancestor to be composed
of linear chromosomes, and the same property is desired in the reconstructed genome
map.

2. The genome map should be consistent with the syntenic information between markers.
This means, in an ideal scenario, we should be able to find all ancestral syntenies that
we predicted on the map we have reconstructed.

15

This problem is similar to reconstructing physical maps [2,48], and so there is a large corpus
of work in computational biology to address such problems.

At a high level, the problem may be attacked using a combinatorial concept called
the consecutive ones property. This concept was first introduced for other problems in
biology [87], but has since been used for various problems in both physical mapping [133] and
ancestral genome reconstruction [17, 38, 43, 170]. The concept is a mathematical encoding
of syntenies between markers, and lends itself to algorithmic techniques that can be used
to reconstruct contiguous ancestral regions (CARs), large sequences of markers that are
consistent with the predicted ancestral syntenies.

One of the major drawbacks of using this approach is that the original concept did not
have a mechanism to encode or handle repeated markers. Therefore, it was common to work
with markers that are inferred to occur exactly once in the ancestral genome [38, 43, 170].
Later in the dissertation, we will discuss how such data can also be encoded, and the
computational difficulties that arise on doing so.

1.5 Contributions in this dissertation

The theoretical contributions in this dissertation cover two main topics, both of which lie
within the same mathematical framework of data representation. The first topic involves
finding chromosomal organization in the presence of repeated genomic segments. We cover
the difficulty of deciding the realizability of a given input as a valid genome map, which
conforms to the constraints imposed within the input. We introduce the concept of repeat
spanning intervals to aid with reconstructing the chromosomal organization, and prove
tractability and intractability results concerning optimizing over sets of repeat spanning
intervals in order to achieve realizability.

The second topic concerns the extension of vertex ordering problems in graphs to hy-
pergraphs, and using them as natural optimization criteria to approximate chromosomal
organization in the absence of repeated segments on the genome. We treat this as a theoreti-
cal problem and prove approximation bounds for one such extension. We also briefly discuss
polynomial time solvability of these problems, and state a conjecture on the structure of
the input in order to admit a polynomial time algorithm for optimal ordering.

We also discuss the application of some of the developed algorithms to real data from
the field of ancestral genome reconstruction. We show the results of a scaffolding software
for ancestral genomes on the genome of the ancestral Black Death agent. We also include
the results of an ancestral genome map reconstruction software on ancestral Anopheles
mosquito genomes.

16

1.6 A note to the readers

The results in this document are worded into formal mathematical statements. However,
considering the community this manuscript is aimed at, it is essential that a person not
acquainted with mathematics or theoretical computer science should be able to understand,
or at least grasp the gist of the statements. Keeping this in mind, we present here a roadmap
for reading the dissertation.

Chapter 2 presents the mathematical model that we will be using in this dissertation.
It also serves to establish the connection between the mathematical objects we are dealing
with, and the biological questions that are being addressed. Most importantly, this chap-
ter presents an informal description of the mathematical problems we will address in this
dissertation. Where suitable, we provide illustrations to elucidate our point.

The second part of the document is dedicated to the problem of dealing with repeats.
The introductory chapter in the section lays out the problems that computational biologists
face when having to deal with repeated genomic segments in genome mapping, and the
algorithmic solutions, if any, for the same. These chapters combine a set of theoretical
results, and explain the biological intuition behind each of them.

The third part of the document is a set of theoretical results, which, though interesting
in their own right, do not yet have well defined biological applications. The reader is invited
to go through them, though those uninterested in results of a more theoretical nature may
skip them in a cursory reading.

The final part of the document is the most interesting from a biological standpoint. This
compiles details about software developed with collaborators for ancestral genome mapping
and scaffolding, and includes results on real data. We refer back to the theoretical results
in the manuscript that we used to design the algorithms implemented in the software. So,
in case the reader decided to skip the theoretically heavy sections, they may always refer
to the relevant results on a need-to-know basis.

The curious reader may always turn to the appendices if they want a quick primer on
some mathematical concepts that are used in the manuscript, or to get the pseudocode for
some of the algorithms introduced in the text.

17

Chapter 2

Background and preliminaries

The aim of this dissertation is to introduce results concerning the reconstruction of genome
maps. In order to do that, we first need to understand exactly what a genome map is within
the formal constructs that we will be using. Let us recollect the types of data we are given.

1. We are given genomic markers.

2. We may have an upper bound on the number of times a specific marker appears on
the genome of interest.

3. We have synteny information, represented by sets of markers that are conjectured to
occur consecutively on the genome we wish to reconstruct.

4. These sets of markers may be accompanied by some confidence measure, a weight or
probability that a particular set is truly present in the genome of interest.

There may be more intricate details we can use, but the current information is enough
to formally specify a mathematical model. This is the objective of the chapter. We start
with the mathematical model of a genome map, and move on to how the data available to
us is encoded in a combinatorial construct, and how it relates to this mathematical model.

2.1 Representing genome maps

We can start with defining what a genome is. We define a genome map as follows.

Definition 2.1. Let Σ be the alphabet of genomic markers. A genome map M ⊆ Σ∗ is a
set of linear and/or circular sequences on the alphabet Σ.

To capture the notions of linear and circular chromosomes, as well as plasmids, we can
define a genome model.

Definition 2.2. Given a genome map M on an alphabet Σ of markers, we say that

18

1. M belongs to the linear genome model if there are no circular sequences on Σ in M ,

2. M belongs to the unichromosomal circular genome model if there is exactly 1 circular
sequence on Σ in M , and there are no other sequences (linear or circular) in it,

3. M belongs to the multichromosomal circular genome model if there are 1 or more
circular sequences on Σ in M ,

4. M belongs to the mixed genome model if there are 1 or more linear or circular se-
quences on Σ in M .

These two definitions capture the essence of a genome: it is a sequence, or a set of se-
quences (chromosomes and/or plasmids) of markers (genes). The structure of the sequences
is specified by the genome model considered. This structure tells us whether the genome
under consideration is linear or circular. The modifiers unichromosomal and multichromo-
somal specify the number of sequences, i.e. the number of chromosomes. It is important to
note that the linear genome model is a special case of the mixed genome model. Further-
more, the unichromosomal circular genome model is a special case of the multichromosomal
circular genome model, which itself is a special case of the mixed genome model. Formally,
we have the following inclusions.

Linear ⊂ Mixed,

Unichromosomal circular ⊂ Multichromosomal circular ⊂ Mixed.

As a result, where multiple circular sequences are concerned, we will ignore multichromo-
somal circular models and only consider the mixed genome model. The linear and unichro-
mosomal circular model will still prove to be useful, as very often we desire not only a
certain structure on the genome to be reconstructed, but also a restriction on the number
of sequences that the genome is composed of.

When two markers are found adjacent to each other in a genome map, they are said to
form an adjacency. A set of three or more consecutive markers on a genome map is called
an interval. Note that at the moment, we are not considering the exact order of the markers
on the genome map; an interval is defined as a set of markers rather than a sequence. Later,
we will discuss how to associate a sequential structure to intervals.

At this point, note that the only piece of information we are using is the set of markers.
As a rule, we will treat this set as gospel for the algorithmic problems we discuss in this
document. While there may be other data that contain errors, we will only use markers
that we are confident to find in the genome being reconstructed.

19

1 2 3 4 2 5

7

4

8

9

6

2

1

(a) Genome map with undoubled markers.

1 2t 2h 3h 3t 4 2h 2t 5t 5h

7

4

8t

8h

9

6

2h

2t

1

(b) Genome map with doubled markers.

Figure 2.1: A genome map in the mixed genome model. Figure 2.1a shows a genome map
with all markers undoubled, the direction of the oriented markers shown by arrows. Of the
two sequences in this map, one is a linear sequence, while the other is a circular sequence.
Markers that appear more than once in the map are depicted in green. Figure 2.1b shows
the doubling of the same map. Every oriented marker has been separated into a head and
tail component, indicated by the subscripts h and t respectively.

2.1.1 Repeats.

The definition of a genome map is very general; since we are simply asking for a sequence
of markers, the only restriction placed on the map is the structure. In this context, we have
the following definitions.

Definition 2.3. A repeat in a genome map M is a marker v ∈ Σ which appears at least
twice over all sequences in M .

In other words, a repeat is simply a repeated genomic marker. As we shall see in the
next chapter, the presence of repeated markers leads to theoretical obstacles while trying
to reconstruct a genome map.

2.1.2 The orientation of markers

Markers in a genome are not point objects- they are sequences of nucleotides, which makes
them linear objects. Marker orientations become important when we take into account the
fact that DNA molecules are double stranded, and in biological processes, the direction in

20

which a DNA strand is read is important. So, saying that one marker is adjacent to another
does not present a complete picture, as this statement excludes information about which
end of one marker is adjacent to which end of the other. This leads to the concept of the
orientation of a marker occurrence in a map. This is usually indicated by a sign (either
+ or −) associated to the occurrence with respect to some reference that is decided upon
whilst defining the markers [82].

It is not necessary that the orientation is known for all markers in a map. The set of
markers we consider will be assumed to be partitioned into two sets: the set of oriented
markers Σo, and the set of unoriented markers Σu. In general, the algorithmic and com-
plexity results in this document are not affected by the orientation of the markers. In the
case that the orientation does play a key role, we explicitly make a note of it.

A common practice employed in order to treat oriented markers as point objects is to
treat the start and the end of a marker as separate markers in themselves. Thus, given
v ∈ Σo, we can replace it with a head marker vh, and a tail marker vt. An occurrence of v
in a genome map M is interpreted as an occurrence of one of two consecutive substrings,
vh.vt or vt.vh, based on the orientation of that occurrence of v. The process of replacing all
occurrences of a marker in an alphabet, and in a map M defined on the alphabet, with the
substrings corresponding to the orientation of that marker is called doubling.

The alphabet Σo can thus be partitioned, and the alphabet Σ is denoted as a partition
into 3 sets, i.e. Σ = Σh∪Σt∪Σu, into a head marker set Σh, and a tail marker set Σt. There
is a bijection between the markers in Σh and those in Σt, defined as the correspondence
between the head and the tail of the marker that has been doubled. We represent this
relation as an injective involution ψ : Σ→ Σ, which has the following properties.

1. For v ∈ Σh, ψ (v) ∈ Σt, and no other v ∈ Σh maps to ψ (v).

2. For v ∈ Σu, ψ (v) = v.

3. For all v ∈ Σ, ψ (ψ (v)) = v.

From now, the set Σo will be assumed to consist of head and tail marker sets, Σh and Σt.
The markers in these sets will still be referred to as oriented, as this implies that any genome
map they appear in must have been doubled.

The concept of a genome map with repeats is illustrated in Figure 2.1. Figure 2.1a
depicts a map in the mixed genome model with oriented and non-oriented markers, while
Figure 2.1b shows the doubling of the same map.

2.2 Hypergraphs and binary matrices

We now have a mathematical model for a genome map . However, the genome itself is
unavailable to us. We only have access to certain facets of the genome: the set of markers,

21

the colocalization information, the copy numbers etc. How do we represent this data so
that we can try to obtain a genome from it?

The model we use to do this is by representing the data as a binary matrix, or a
hypergraph. A hypergraph is a 2-tuple H = (V,E), where V is a set of vertices, and E ⊆ 2V

is a set of hyperedges, each hyperedge being a subset of V .
The incidence matrix of a hypergraph H = (V,E), |V | = n and |E| = m is the binary

m×n matrixM where the columns are index by the vertices in V and the rows are indexed
by hyperedges in E, and mij = 1 if and only if the vertex associated with the column j

belongs to the hyperedge associated with the row i.
The basic idea of the model is this: every marker is represented by a vertex of the

hypergraph. Since the colocalization information tells us which markers occur consecutively
on the genome of interest, every piece of such information is encoded as a hyperedge. Then
we look for a genome map representing the genome of interest, such that this encoding is
in some sense consistent with it. Formally, we define an instance to the problems we deal
with as the following object.

Definition 2.4. Let Σ = Σh ∪ Σt ∪ Σu be a set of markers. An instance on Σ is a triple
(H,µ,w), with the following definitions.

1. H = (V,E) is a hypergraph on the set of vertices V , which is partitioned into sets
V h, V t and V u.

2. There is a bijective map χ : Σ→ V , which can be partitioned into 3 different bijections,
χh : Σh → V h, χt : Σt → V t and χu : Σu → V u.

3. µ : V → N is called a multiplicity function. For every marker v ∈ Σ, µ (χ (v)) is the
upper bound of the copy number of v, and µ (χ (v)) = µ (χ (ψ (v))).

4. w : E → R+ is a non-negative weight function on the set of hyperedges.

The model we have presented seeks to represent markers by vertices, which are point
objects. This is where the notion of doubling markers comes into play. In order to capture
the orientation of markers into the model, we associate 2 vertices to the doubling of the
marker instead: a head vertex, which is the image of its doubled head marker in χh, and
a tail vertex, the image of its doubled tail marker in χt. The vertices associated to ori-
ented markers are also said to be oriented, and conversely, vertices associated to unoriented
markers are termed as unoriented vertices.

The involution ψ defined over the doubled alphabet Σ carries over to the set of vertices
V . Given a vertex v ∈ V associated to a marker u ∈ Σ, its mate, denoted by v, is the
vertex χ (ψ (u)). Unoriented vertices are their own mate, and head oriented vertices are
mated to their corresponding tail vertices and vice-versa. We also include edges {v, v} in
the hyperedge set E, indicating that the two associated oriented markers should always

22

occur together in a genome map. Since markers in Σ are mapped bijectively with the set
of vertices V in an instance, a genome map may be interpreted as a set of sequences on the
alphabet V . This is the convention we will adopt in the rest of the document.

The function µ specifies a natural partition of the vertex set of H = (V,E). Formally,
we define the following sets.

Definition 2.5. Given an instance (H,µ,w), H = (V,E), the set of repeats is the set
VR = {v ∈ V : µ (v) > 1}. The set of non-repeats is the set V \ VR.

The set VR denotes the set of markers that we have inferred to possibly appear more
than once in the genome of interest.

Often, we will assume that all the hyperedges in the set E of an instance have equal
weight. Alternately, it may be the case that the weights of the hyperedges do not play
a role in designing a solution to the mathematical problem under consideration. In these
cases, we specify an instance as the 2-tuple (H,µ), in order to make the notation less
cumbersome. Sometimes, we will also deal with cases when the function µ maps all vertices
to 1. In these cases, an instance is defined as the input H = (V,E), and we shall specify
the weight function w as a separate input to avoid confusion. Given the incidence matrix
of a hypergraph, the notions of the multiplicity function and the weight function can be
naturally associated to the columns and the rows of the matrix respectively.

Since the vertices of the hypergraph are being used to represent markers, and the hyper-
edges represent sets of markers that are inferred to be colocalized, when a hyperedge is of
size 2, it simply means that the two markers associated to the vertices in the hyperedge are
inferred to occur together on the genome map. As such, they represent adjacencies in the
genome. Similarly, when a hyperedge has more than 1 vertex, the markers corresponding to
the vertices in the hyperedge are inferred to occur in a continuous interval on the genome
map. In the rest of the document, the words adjacency and interval must be interpreted as
explained above. The subset of all adjacencies in a hyperedge set E is denoted by EA. The
subset of all intervals is denoted by EI . The weight functions restricted to the sets EA and
EI are denoted by wA and wI respectively. The instance (HA, µ, wA), where HA = (V,EA),
is called the adjacency instance underlying (H,µ,w).

Sometimes, we may have more information about intervals than can be captured by the
current model. We may know, for example, the exact order in which the markers associated
to the vertices in an interval appear on the genome. Based on this, we can partition the set
of intervals as follows.

Definition 2.6. Given an instance (H,µ,w), where H = (V,E), an interval e ∈ EI can be
classified into one of the following classes.

1. e ∈ E is an unordered interval over k vertices if e = {v0, . . . , vk−1}, where each vi ∈ V
for all i ∈ [k], k > 2.

23

1

2t5t

7

2h

5h

4

8t

3t

3h

8h

9

6

1

Figure 2.2: An example of an instance. The figure depicts a hypergraph, with edges repre-
senting adjacencies, and overlays representing intervals. In the instance, the circular, green
coloured vertices are repeats. Of these, the vertex with label 4 has multiplicity 2, and the
vertices with labels 2h and 2t have multiplicity 3. The square, red coloured vertices are
non-repeats. Unordered intervals are shaded blue, and ordered intervals are shaded brown.
The hyperedge e = {5t, 2h, 2t, 4, 3t} is associated with the order o (e) = 3t. 4. 2h. 2t. 5t, and
the hyperedge e′ = {7, 4, 8t} is associated with the order o (e′) = 7. 4. 8t. Dotted lines are
edges that are not present, but are implied by the order on the intervals.

2. e is an ordered interval over k vertices if e = {v0, . . . , vk−1} is associated to a sequence
o (e), in which each vertex v ∈ e occurs at least once, and no other vertex in V occurs
in o (e). An ordered interval e ∈ E is said to have content

{
vi00 , . . . , v

ik−1
k−1

}
if each

vertex vj occurs exactly ij times in o (e), for ij ∈ N for all j ∈ [k]. The sequence
o (e) is denoted by x0.x1 . . . xl−1, where xi ∈ e for all i ∈ [l], and l =

(∑k−1
j=0 ij

)
. The

reversal of o (e), denoted by o (e), is the string xl−1.x0.

Given an ordered interval e ∈ EI , an adjacency {u, v} is said to be compatible with e if
either u.v or v.u occurs as a consecutive substring in o (e).

Figure 2.2 shows an example of an instance. This example includes the concepts of
adjacencies, intervals and multiplicities.

As in graphs, we can define a notion of a connected hypergraph.

Definition 2.7. Let H = (V,E) be a hypergraph. H is said to be connected if, for
any two vertices u, v ∈ V , there is a sequence of distinct vertices (v0, . . . , vk−1), where
vi ∈ V \ {u, v}, such that each of the pairs {u, v0}, {vk−1, v}, and each {vi, vi+1} occur in a
common hyperedge in E, for i ∈ [k − 1], for some k ∈ Z≥0.

We can also define an induced subgraph of a hypergraph as follows.

24

Definition 2.8. Let H = (V,E) be a hypergraph, and let U ⊆ V be an arbitrary subset of
the vertices. The subhypergraph induced by the set U , denoted by H [U], is the hypergraph
with vertex set U and hyperedge set EU = {e ∩ U : e ∈ E}.

It may be easier to visualize an induced subhypergraph in terms of the incidence matrix
of the original hypergraph. Let M be the incidence matrix of H = (V,E). Given a subset
U of the vertices of H, H [U] is the hypergraph whose incidence matrix is the submatrix
of M obtained by retaining columns associated to the vertices in U . Rows with no 1’s or
with only one 1 can be discarded as trivial, as they correspond to empty hyperedges (which
contain no vertices in U) and to single element hyperedges (which are the same as vertices)
respectively.

Using Definitions 2.7 and 2.8, it is possible to define a connected component of a
hypergraph H = (V,E). This is an induced subhypergraph on U ⊆ V such that H [U] is
connected, but ∀U ′, U ⊂ U ′, H [U ′] is not connected.

Given a set of vertices U ⊆ V from an instance (H,µ,w), whereH = (V,E), the instance
induced on U specifies the instance (H [U] , µU , wU), where µU and wU are the restrictions
of µ and w to the set U and EU respectively. In the case of wU , all the hyperedges in
H [U] which were not present in E inherit their weight from the hyperedges in E that were
truncated to obtain them.

2.3 Properties on binary matrices and hypergraphs

Given an instance (H,µ,w), we now want to see if the data encoded in this instance satisfies
the constraints of being extracted from a genome map. We do this by defining the following
terms.

Definition 2.9. Let (H,µ,w) be an instance, H = (V,E), and let M ∈ G be a genome
map in the genome model G. We say that the map M is consistent with the instance if,
for all vertices v ∈ V , the number of occurrences of v in the sequences specified by M is at
least 1 and at most µ (v).

A consistent genome map preserves the upper bound on the copy numbers of the mark-
ers represented by the instance. At the same time, in order to see if the colocalization
information encoded by the instance is also correct, we will need the following concept.

Definition 2.10. Let (H,µ,w) be an instance, H = (V,E), and let M ∈ G be a genome
map in the genome model G. A hyperedge e ∈ E in the instance is said to be compatible
with M if

1. e is an adjacency {v0, v1}, and there is a consecutive substring in M composed of
exactly the vertices v0, v1,

25

2. e is an unordered interval {v0, . . . , vk−1}, and there is consecutive substring in M in
which each vi ∈ e, i ∈ [k], occurs at least once, and no other vertex in V occurs in
this substring, or

3. e is an ordered interval, with associated order o (e), and there is a consecutive substring
in M which is equal to o (e), or the reversal o (e).

Finally, we can put these concepts together, to give a definition of what it means for a
given instance to be ‘good’.

Definition 2.11. Let (H,µ,w), where H = (V,E), be an instance, and let G be a given
genome model. The instance is said to be realizable in the genome model G if there exists
a genome map M ∈ G such that

1. M is consistent with (V, µ), and

2. every hyperedge e ∈ E is compatible with M .

Let us take a demonstrable example here. The instance depicted in Figure 2.2 is re-
alizable in the mixed genome model. In fact, Figure 2.1 is a possible realization for this
instance. Note that no vertex appears in the genome map more often than its multiplicity,
and that the adjacencies and intervals do indeed form consecutive substrings in the genome
map. The reader will find that every adjacency or interval in the model is compatible with
the map in Figure 2.1, and the vertices appear exactly as many times as their multiplicity.

The realizability of an instance (H,µ,w) may also be understood as the existence of a
special set of walks on the vertices of the hypergraph. This set of walks must encounter each
vertex v ∈ V at least once and at most µ (v) times, and each hyperedge must be compatible
with at least one of the sequences of vertices inscribed by these walks.

It is interesting to note here that an instance which is realizable in the linear genome
model is also realizable in the unichromosomal circular, the multichromosomal circular and
the mixed genome models. For example, given a realization in the linear genome model, if
we concatenate the various sequences in the realization, and then add the adjacency between
the first and the last vertex in the sequence, this will be a realization in the unichromosomal
circular model. Similarly, an instance realizable in the unichromosomal circular model is
realizable in the multichromosomal circular and the mixed genome models. This is because
realizability does not specify that the only adjacencies and intervals which are compatible
with the realization are the ones present in the instance. While constructing a realization
of a given instance, we can add adjacencies and intervals that are not present in the input
instance, subject to the consistency of the map, and not affect realizability.

Note that the multichromosomal circular genome model constraints the eventual result-
ing map to be a set of circular sequences. However, the instance given may not naturally

26

admit a set of circular sequences, i.e. we have to add extraneous adjacencies between cer-
tain markers in order to get circular sequences. This can be avoided by using the mixed
genome model. Since we are allowed to have linear sequences, we can bypass the need to
add extraneous adjacencies, and restrict the constructed genome map to adjacencies and
intervals that were already present in the instance. Thus, at this point we will completely
ignore the multichromosomal circular model, and the term circular genome model should
be interpreted to mean the unichromosomal circular model.

While these definitions may seem a bit exotic, this is merely a generalization of a long-
known property of certain binary matrices.

Definition 2.12. A binary matrix M is said to have the consecutive ones property (C1P)
if there exists a permutation of the columns of M such that the 1’s in every row of M occur
in a single consecutive block in the row. A permutation that imparts this property to a
matrix M is called a consecutive ones ordering of M (or a C1P ordering of M).

A hypergraph H = (V,E) has the consecutive ones property (C1P) if its associated
incidence matrix has the consecutive ones property.

The consecutive ones property was first introduced by Benzer [15] for studying the fine
structure of genes. Before the advent of modern sequencing techniques, it was used exten-
sively for building physical maps [2, 97, 133]. It is closely related to various mathematical
objects, such as interval graphs and clique decompositions. For us, it is the simplest case
of more general definitions of consecutivity. Assume that the function µ in a given instance
(H,µ,w) maps all vertices to 1. Then, this instance is realizable in the linear genome model
if and only if the hypergraph H has the C1P. The connection is almost obvious: given a
C1P ordering for the incidence matrix M , we can lay out the vertices of H in the specified
order. Then, since every row is a hyperedge, and is stated to have a single consecutive
block of 1’s, the hyperedges in E must occur as consecutive substrings in this order, which
means they are all compatible with the order. Since every vertex appears exactly once in
the order, and every row is compatible, the instance must indeed be realizable in the linear
genome model.

As an example, take the instance shown in Figure 2.3a. All vertices are unoriented and
have multiplicity 1, and intervals are depicted in the figure as overlays. Clearly, there is a
natural map in the linear genome model for which this instance is realizable. The incidence
matrix of the hypergraph we associate with the data is shown in Figure 2.3b (ignoring the
weights on the hyperedges). The matrix associated with this data does not specify the order
of the columns (i.e. markers) or of the rows (i.e. colocalization data).

The same matrix, with columns ordered as per the order of the vertices in a realization
of the instance, is shown in Figure 2.3c. One can see that every row has a single consecutive
block of 1’s. Indeed, this is what we would expect, since the data tells us that every row is
a synteny between markers that occur together in the genome, and no other marker occurs

27

v0 v1 v2 v3 v4 v5 v6 v7

1

(a) A hypergraph with only non-repeats.

v0 v4 v3 v5 v6 v7 v1 v2
1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1
0 1 1 1 0 0 1 1
0 1 0 1 1 1 0 0
0 0 0 1 1 0 0 0

(b) The incidence matrix of the hypergraph.

v0 v1 v2 v3 v4 v5 v6 v7
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0

(c) Reordered matrix.

Figure 2.3: An example of an instance which has the consecutive ones property.

between them.
A closely related property of binary matrices is the circular ones property [201].

Definition 2.13. A binary matrix M is said to have the circular ones property (Ci1P) if
there exists a permutation of the columns of M such that, for every row, either the 1’s in
the row occur in a single consecutive block, or the 0’s occur in a single consecutive block.
A permutation that imparts this property to a matrix M is called a circular ones ordering
of M (or a Ci1P ordering of M).

A hypergraph H = (V,E) has the circular ones property (Ci1P) if its associated inci-
dence matrix has the circular ones property.

This is equivalent to the realizability of an instance with all vertices having multiplicity
1 in the circular genome model.

A more general definition is required to include the concept of repeats, which is where
the idea of realizability is useful. In literature, realizability in a given genome model are
defined as generalizations of the C1P [208].

1. An instance which is realizable in the linear genome model is said to have the consec-
utive ones property with multiplicity (mC1P).

2. An instance which is realizable in the circular genome model is said to have the circular
ones property with multiplicity (mCi1P).

3. An instance which is realizable in the mixed genome model is said to have the
component-wise circular ones property with multiplicity (cmCi1P).

28

We will mostly use the notion of realizability in order to be able to specify the genome
model of interest in different problems. If the problem being discussed is specific to the
C1P, however, we will use the classical definition of the C1P.

2.4 Defining the problems

The ambit of the problems discussed in the document fall into two main categories. The
first problem asks if, given data, we can determine if this data does indeed come from a
genome of interest, or if there are errors in the data. In other words, given a set of syntenies,
along with multiplicities of markers in these syntenies, can we reconstruct a genome map
which contains all syntenies and at most as many copies of a marker as its multiplicity?

Question 2.1. Given an instance (H,µ), can we determine if it is realizable in a given
genome model, i.e. does it have the mC1P, mCi1P or cmCi1P?

The second problem is somewhat more general. It asks how close the given data is to data
that would have no errors. So, given the set of syntenies and markers with multiplicities,
and knowing that this data has errors, is there any way we can quantify these errors?

Question 2.2. Given an instance (H,µ,w) which is known to not have a realization in a
given genome model, can we quantify how ‘far’ it is from having a realization?

It is very possible that the answer to either of these problems depends on the structure
of the instance, as well as the genome model we will be working with. Furthermore, there
are various ways to quantify how ‘close’ an instance is to something ideal. The theoretical
content of the document is intentionally split into near-independent parts, the first of which
deals with cases with possible repeats, and the second generalizes well-known graph theoretic
measures of linearity to instances when the multiplicity function maps all vertices to 1.

It is also necessary to note that even if an instance is realizable in a given genome model,
there is usually no guarantee that the genome map associated to it is unique. Very often,
there may be multiple maps that are consistent, and the hyperedges in the given instance
may be compatible with all these maps. In this case, the onus is on us to choose the right
map, the one that is closest to the real genome map. We shall see that this problem is a
common by-product of having repeats in the instance.

The final section is devoted to applications of the methods developed before to problems
in ancestral genome map reconstruction.

29

Part II

The Consecutive Ones Property
with Multiplicity

30

Chapter 3

Genome maps with repeats

In the second chapter, we chalked out a broad idea of the type of problems that we deal with,
and the mathematical model we use. We also mentioned, quite insistently, that repeats in
the model give rise to computational problems. Here, we explain why repeats are such an
obstacle to efficient computation of a genome map. We will formally define the problems we
shall encounter over the next four chapters, and state the known results for the tractability
of these problems.

3.1 The problem with repeats

Repeats are a fairly common occurrence in genomes, and one can immediately surmise that
accounting for repeated markers in genome maps would certainly be a welcome addition
to current mapping and assembly models [200]. But quite often, the results presented
exclude repeated markers, and work solely on unique ones [30]. This is not an arbitrary
decision- computing maps and assemblies with repeats is a major, and well studied, problem
in bioinformatics. Algorithms usually either fail or become computationally costly when
faced with repeated markers. This adds to the already weighty complexity issues that these
methods have to work around.

Significantly, the presence of repeats introduces ambiguity in the construction of a
genome map. Because a repeat is present in different parts of a genome, colocalization
information taken from the neighbourhood of the repeat occurrences may differ wildly. At
this stage, if the colocalization information is not long enough, it is hard to reconcile in-
formation from one neighbourhood with another, and it is hard to tell them apart. This
means that we are faced with a choice to make as to which occurrence of the repeat is each
neighbourhood associated with.

Furthermore, when many repeats are inferred to be colocalized, it is hard to make out
the internal organization of the repeats at any location. This becomes a major problem
when all colocalization information we have is unordered. For example, assume there are

31

3 3

3

Figure 3.1: Ambiguity in the genome map and the internal repeat organization due to
repeats. The square vertices are non-repeats, and the rest are repeats with multiplicity 3.
We show two possible ways to construct a map which is consistent and compatible with
the adjacencies shown (assuming that the rest of the instance is also realizable in the given
genome model). In the two cases, the non-repeats and the repeats are organized differently.

two repeated marker A and B, and the subsequence corresponding to an occurrence of B
on the genome of interest is A.B.A. If we only have unordered intervals, then the only
information we can infer regarding the colocalization of A and B is that they are adjacent.
So, there are multiple possibilities available for organizing A and B on a genome map, such
as A.A.B, A.B.B, B.A, A.B.A.B etc. , limited only by the copy numbers of A and B.

Each of these situations is an obvious problem when the only data we have is the
adjacencies between markers. Then, since the neighbourhood information available is so
localized, the location of a repeated marker, which can be adjacent to many other markers,
becomes ambiguous. When many repeats occur next to each other, then this ambiguity
magnifies to the problem of finding which repeat occurrences appear where on the genome.
Figure 3.1 shows a classic example of both problems due to repeats. The instance here
has a set of repeats adjacent to each other, and each adjacent to certain non-repeats, but
there are no intervals. Assume that the entire instance is realizable in some genome model.
However, there are at least 2 possible ways to traverse the set of adjacent repeats from one
non-repeat to another. This is a consequence of the various possible adjacencies with the
repeats, a problem which is encountered when there is not enough information available in
the neighbourhood of the various occurrences of the repeats. At the same time, within the
set of repeats itself, it is not possible to find out what the exact order of these repeats are.
Thus, the internal organization of the repeats among themselves is also unclear.

However, if we do have long-range information, which encodes more than just the im-
mediate neighbourhood of a repeated marker, it is possible to narrow down the set of
realizations. Such sets fix the order of the vertices in a map, which means the internal

32

organization and the ambiguities get resolved. The problem is that in the presence of such
sets, the computational problems we deal with become intractable.

3.2 Repeat clusters and repeat spanning intervals

Recall that an instance to a problem is a 3-tuple (H,µ,w), where H = (V,E) is a hyper-
graph, µ is the multiplicity of the vertices in the hypergraph, and w is a weight function on
the hyperedges. Also recall that VR is the set of all repeats in V . This partition of the set
of vertices gives rise to a way to isolate ‘problem areas’ in the model, by defining connected
components in the hypergraph induced by the repeats.

Definition 3.1. Given an instance (H,µ,w), H = (V,E), a repeat cluster R of this instance
is a maximal connected component in the induced subhypergraph H [VR].

The frontier of a repeat cluster R, denoted by F (R), is the set of non-repeats in V

which were in the same hyperedge as a vertex in R. The extension of R, denoted by R is
obtained by augmenting the hyperedge set of R by a set of hyperedges E′ defined as follows.

E′ =
{
e′ : ∃e ∈ E, e′ = e \ (V \ (R ∪ F (R)))

}
.

The notion of a repeat cluster localizes zones in the model which will present ambiguities
and computational problems. Given a repeat cluster R, we use the notation v ∈ R to denote
that the vertex v is in the vertex set of R.

A final object, which shall play a major role later in this manuscript, is the repeat
spanning interval.

Definition 3.2. Let (H,µ,w) be a given instance, H = (V,E), and let R be a repeat
cluster in the instance. A repeat spanning interval over R is a hyperedge e ∈ E with the
following properties.

1. e is an ordered interval with content
{
u1, v1, vi00 , . . . , v

ik−1
k−1

}
, and associated sequence

o (e), where each vi is a repeat in R, for i ∈ [k], and u, v are non-repeats in F (R).

2. The sequence o (e) is of the form u.r0 . . . r`−1.v, where all ri ∈ e \ {u, v}, and ` =(∑k−1
j=0 ij

)
.

The two non-repeats at the extremities of a repeat spanning interval are said to frame it.
A minimal repeat spanning interval is a repeat spanning interval which spans over a single
unoriented repeat, or two oriented repeats in R.

The repeat spanning interval is basically an encoding of long range information that is
highly specific. In this respect, it is very similar to information from long reads in genome
assembly, which may span many repeated genomic regions. It tells us exactly what the

33

v0 v1

v2

u0

u1u2

u3

Figure 3.2: An example of how repeat spanning intervals resolve ambiguities. The overlay
here is a repeat spanning interval associated with the order u2. v0. v2. v1. v2. u1, spanning
over the repeat cluster consisting of the repeats v0, v1, v2. In the absence of this informa-
tion, Figure 3.1 showed an example of the problem encountered in the presence of repeats.
However, with this information, a single map is fixed, as depicted, with the internal order
within the repeats partially resolved.

order of markers is in a consecutive subsequence of the genome map, when we know that
the subsequence starts and ends at unique markers, but spans repeats. For example, take
the instance given in Figure 3.1. If we had no intervals, but only adjacencies, there are
two possible realizations for this instance in the linear genome model. On the other hand,
if we are given repeat spanning intervals, it may be possible to disambiguate the possible
genome maps, as well as specify the correct repeat organization within a cluster. This case
is illustrated in Figure 3.2.

In the next few chapters, we will see that repeat spanning intervals are much better
behaved than general intervals. They will be an important addition to the model.

3.3 Deciding the existence of a genome map with repeats

Consider the following problem.

Problem 3.1. Let (, µ) be an instance, H = (V,E) and let G be a genome model. Does
there exist a realization M of the instance such that M ∈ G?

This is the first and most basic of the problems of interest to us, and the formal statement
for Question 2.1. To put it in a more applied framework, it asks if, given the data regarding
the copy number and colocalization of markers, there is a genome from which this data
could have originated.

Note here that the problem says nothing about getting a unique realization. Indeed, it

34

is very possible that the data provided to us is insufficient to determine a unique realization,
as explained in Section 3.1. That being said, the problem is interesting since we are seldom
able to obtain data without errors. This means that, before we subject the data to possibly
resource hungry techniques of optimization, we might want to first see if the data is already
optimal. An algorithm to solve the decision problem can also function as a greedy heuristic,
a proxy in the absence of an efficient optimization algorithm.

3.3.1 Known results

The best known decision result for Problem 3.1 is when the multiplicity function µ maps all
vertices to 1. Then, assuming that the genome model G is the linear model, the problem de-
generates into the problem of deciding if the hypergraph in the instance has the C1P. Testing
if a hypergraph has the C1P, which is the same as testing whether its incidence matrix has
the C1P, can be done in polynomial time and space, as shown by Fulkerson and Gross [87].
Since then, many algorithms have been designed to decide if a hypergraph/binary matrix
has the C1P in time and space linear in the size of the input [99,142,175], the first of which
can be attributed to Booth and Leuker [24].

Theorem 3.1. [24] Given (H,µ), H = (V,E) , |V | = n, |E| = m, where µ maps all vertices
to 1 and all intervals are unordered, it is possible to decide if the hypergraph H has the C1P
in O (n+m+

∑
e∈E |e|) time and space.

A by-product of this theorem is that, assuming µ still maps vertices to 1, the decision
problem is tractable in linear time and space for all genome models. Realizability in the
circular genome model is equivalent to the circular ones property (Ci1P) [201]. This can
be tested by complementing those rows in the incidence matrix that have a 1 in their first
column in the initial ordering, and then testing for the C1P. Realizability in the mixed
genome model is equivalent to the cmCi1P, and since each vertex can only occur once, this
is the same as testing if every connected component in the hypergraph has the Ci1P. It is
also worth noting that in the case when certain intervals are ordered, it is relatively easy to
decide if the resulting instance is realizable. This can be done by constructing a PQ-tree,
a data structure which represents all possible realizations [24]. The tree consists of 2 types
of nodes, P -nodes, whose children can be permuted in any manner, and Q-nodes, on whose
children a linear order is imposed, but the order may be reversed. Once we have the tree
for the instance in which all intervals are unordered, we can check if the given set of ordered
intervals is compatible with the orders encoded in the tree.

But as stated before, the scenario completely changes when we introduce repeats into
the model. Deciding if an instance is realizable in the linear genome model is then only
possible in a few, restricted cases, a result that was first proved by Batzoglou and Istrail [13],
and later tightened by Wittler et al. [208].

35

Theorem 3.2. [208] Let (H,µ) be an instance, H = (V,E), and let G be a given genome
model.

1. It is possible to decide the realizability of the instance in G in polynomial time if every
hyperedge in E is an adjacency.

2. If maxv∈V µ (v) ≥ 2 and maxe∈E |e| ≥ 3, then deciding the realizability of the instance
in the model G is generally NP-complete.

The proof idea for the tractability result is simple. The hypergraph H in this case is a
graph. Add a new vertex v0 to the instance, having unbounded multiplicity. From every
vertex v ∈ V

1. if v is an unoriented vertex with degree deg (v) ≤ 2µ (v), add 2µ (v) − deg (v) edges
from v to v0, or

2. if v is an oriented marker with degree deg (v) ≤ µ (v) + 1, add µ (v) − deg (v) edges
from v to v0. Add multiedges between v and v after performing this operation for all
oriented vertices, so that their degree is 2µ (v).

An Eulerian tour in the resulting graph will give a walk on the vertices in which every
edge is traversed exactly once. This specifies a genome map. In order to restrict the
resulting genome map to a specific genome model, extra constraints need to be placed on
the total degree of the connected components in the graph, but this can also be done in
polynomial time. On the other hand, if there is an unoriented vertex v whose degree is
greater than 2µ (v), or an oriented vertex v whose degree is greater than µ (v) + 1 after
collapsing multiedges between mates, or if the extra constraints due to the genome models
are violated, the instance cannot admit a valid Eulerian tour.

The hardness result is the tightest possible result for Problem 3.1. As soon as we
constraint the multiplicity to be 1, Theorem 3.1 can be applied, and an algorithm for
deciding the realizability of the instance instance. On the other hand, the tractability result
states that if we are only dealing with adjacencies, the problem is equivalent to checking for
Eulerian tours in a graph. But if both constraints are removed, the problem takes a leap in
computational complexity.

It is possible to get around the negative result by imposing further constraints on the
instance structure. This is the principle behind the following theorem.

Theorem 3.3. [40] Let (H,µ) be an instance, with hypergraph H = (V,E) having the
following properties for every e ∈ E.

1. e is an adjacency.

2. e is an interval containing exactly 1 repeat v ∈ V , and e′ = e \ {v} is a hyperedge in
E.

36

Then, it is possible to decide if (H,µ) is realizable in the linear genome model in polynomial
time and space.

This result is achieved by using the structure of the intervals to restrict the position of
the repeats, and then working around these positions by using Theorem 3.1. The result
again relies on the PQ-tree data structure to impose these restrictions, and pares down the
possible orders in the tree using the intervals.

3.3.2 New results

The concept of repeat spanning intervals opens new possibilities in extending the tractability
of Problem 3.1. Each repeat spanning interval restricts the space of possible realizations
for a given instance. We will show that, in the case that all intervals containing repeats are
repeat spanning, the decision problem is tractable for all genome models.

We will also present a parameterized algorithm for the general decision problem. The
exponential complexity of this algorithm will depend on the multiplicity, the number of re-
peats and the maximum size of a hyperedge, rather than the number of vertices, hyperedges,
or the total size of the hyperedges.

3.4 Optimizing to get a genome map with repeats

While decision problems are the natural starting point for exploring the possibilities behind
the model, they are quite limited. Most data we obtain has at least some degree of errors
or inconsistencies, and ideally, we would like to be able to filter these errors before trying
to use the model to get a realization. This motivates the slew of optimization problems we
have, which can be captured by the following general problem.

Problem 3.2. Let (H,µ,w) be an instance, H = (V,E), and let G be a genome model.
Find a minimum weight set S ⊆ E such that the instance (H ′, µ, w′), where H = (V,E \ S)′,
is realizable in G, where w′ is the restriction of w to the set E \ S.

There is a stark dichotomy to be seen between the tractability of decision problems, and
the natural optimization problems that arise from them. This is exhibited in the results
known for Problem 3.2.

3.4.1 Known results

Perhaps the best example of how quickly the scenario changes in the optimization world is
when Problem 3.2 is restricted to the linear genome model, with the function µ mapping
all vertices to 1. This is the equivalent of finding a minimum weight set of rows in a binary
matrix to delete in order to get a submatrix that has the C1P. We refer the reader to
Dom [64] for a survey of optimization problems related to the C1P.

37

Theorem 3.4. Problem 3.2 is NP-hard for the linear and circular genome models, even
when the function µ maps all vertices to 1.

The hardness of these problems means it is usually inefficient to optimize over the colo-
calization information if we want to find a subset of such information that best fits a linear
or circular genome. There are methods that can be used to approximate the problem [65],
as well as algorithms that run reasonably fast, assuming that certain parameters in the
given instance are small [65,161]. When the multiplicity function maps all vertices to 1, we
have the following result.

Theorem 3.5. [161] Problem 3.2 is solvable in time O∗
(
10k

)
for unweighted instances in

the linear genome model if µ (v) = 1 for all v ∈ V , where k is the number of hyperedges that
need to be deleted in order to obtain an instance which is realizable in the linear genome
model.

The notation O∗ (·) hides factors that are polynomial in the size of the instance. The
algorithm uses the fact that the interval deletion problem, where one needs to delete the
smallest number of edges in a graph to get an interval graph, is fixed parameter tractable in
the number of edges to delete [141]. The exponent base of 10 comes from the upper bound
of at most 10 recursive calls being made in the the branching step of the FPT algorithm.
Since we expect the data to be at least somewhat close to an optimal instance, the number
of hyperedges needed to be deleted is usually low. However, the constant is still quite large
for practical purposes.

Alternately, there are approximation algorithms for this problem for the linear genome
model when the multiplicity of all vertices is 1.

Theorem 3.6. [65] There is a polynomial time algorithm for Problem 3.2 for unweighted
instances in the linear genome model if µ (v) = 1 for all v ∈ V , which outputs a solution
within a factor of at most ∆e + 4, where ∆e is the maximum size of a hyperedge.

The algorithm for this result is a clever use of a forbidden submatrix characterization
of the C1P [202], which is equivalent to the linear genome model in this case. The idea is
to find such submatrices, and destroy them by deleting a row.

If we try to solve Problem 3.2 for the mixed genome model, we find the limit of tractabil-
ity for the problem.

Theorem 3.7. [138] Let (H,µ,w) be an instance, with hypergraph H = (V,E).

1. Problem 3.2 can be solved for the mixed genome model if all hyperedges in E are
adjacencies.

2. If maxe∈E |e| ≥ 3, then Problem 3.2 is NP-hard for the mixed genome model, even if
µ (v) = 1 for all v ∈ V .

38

Figure 3.3: An example of the b-matching algorithm. The dots within a vertex v is the
associated value of b (v), and the labels on the edges are edge weights. This figure was
taken from Maňuch et al. [138].

Strikingly, the hardness result does not depend on the multiplicity function at all. The
tractability result, however, is interesting, and provides a way to find a maximum weight set
of adjacencies that is realizable as a mixed genome. The key to this result is the algorithm
for maximum b-matching. First published by Dessmark et al. [58], this has become a staple
in various methods for ancestral genome reconstruction [185,198].

Definition 3.3. Let G = (V,E) be a graph, and let b : V → N be a function that maps
the vertices to natural numbers. A b-matching of G is a set of edges S ⊂ E such that every
vertex v ∈ V is adjacent to at most b (v) edges in S.

This concept can be exploited by using the function µ to limit the number of edges
a vertex can be adjacent to in the mapping. Given an instance (G,µ,w), G = (V,E),
with only adjacencies and all vertices unoriented, the algorithm of Maňuch et al. makes the
following construction [138].

1. For every vertex v, introduce 2µ (v) vertices
{
v0, . . . , v2µ(v)−1

}
.

2. For every edge e = {u, v}, introduce 2 vertices eu and ev, and the edge {eu, ev}. Give
this edge the weight w (e).

3. Add edges from eu to each ui, i ∈ [2µ (u)], and given all these edges weight w (e).

Once this construction is done, as depicted in Figure 3.3, the classical maximum matching
algorithm [146] is run on it. If, for an edge e = {u, v}, eu is matched to ev, the edge e is
discarded. Otherwise, it is included into the optimal set of edges. Since there are 2µ (v)
copies of each vertex v, each v can be adjacent to at most 2µ (v) edges. Once the algorithm
is finished, the resulting graph can be augmented by adding a vertex t with unbounded
multiplicity, and edges from each v to t such that v has degree 2µ (v). An Eulerian tour on
the resulting graph contains each edge in the chosen set, and each vertex v appears at most
2µ (v) times. By disconnecting the tour at all occurrences of t, we obtain a set of linear and
circular sequences, proving realizability in the mixed genome model. From the maximum

39

matching algorithm, this is guaranteed to be the maximum weight set of such edges. In
order to adapt the algorithm to oriented vertices, we introduce µ (v) copies for an oriented
vertex, with µ (v) edges between v and v.

3.4.2 New results

Since the inclusion of intervals in an instance makes optimization hard, but optimizing
a set of adjacencies is doable in polynomial time (as long as we are working with mixed
genomes), the direction which we take is to first obtain a realizable instance consisting only
of adjacencies, and then using a set of repeat spanning intervals to disambiguate repeats.
The goal, then, is to discard a minimum weight set of repeat spanning intervals such that
the remaining instance is still realizable.

This 2-stage approach, which we call partial optimization, is formally defined and dis-
cussed in Chapters 5 and 6. The idea is that if we have an instance composed only of
adjacencies which is realizable, we can assume that some realization of this instance must
be the realization we are looking for. Following this, the repeat spanning intervals are
introduced in order to filter the list of possible realizations.

We prove that this approach is NP-hard in general. We also give a polynomial time
algorithm for the case when the repeat spanning intervals in the instance are all minimal.
Also, motivated by the fact that repeat clusters and multiplicities are often small, we give a
dynamic programming scheme that exactly computes an optimal solution to the problem.

40

Chapter 4

The existence of genome maps
with repeats

In the current chapter, we shall discuss 2 new results regarding Problem 3.1. Both are
tractability results, but in different senses. The first is a decision result for Problem 3.1 when
the repeat vertices in the instance are only contained in either repeat spanning intervals or
adjacencies. The result is in part inspired by Theorem 3.3, in that we use similar techniques
to isolate ‘paths’ of non-repeats, which we then test for realizability in the linear genome
model.

The second result is more of theoretical interest, and presents a fixed parameter tractable
algorithm for deciding realizability in the linear genome model, parameterized by the num-
ber of repeats, the maximum multiplicity, the maximum size of a hyperedge, and the max-
imum degree of a vertex.

Since decision problems do not optimize over the set of edges, the weight function in
an instance (H,µ,w) is unused. In order to reduce clutter in the notation, we provide the
instance as a 2-tuple instead, (H,µ).

The results presented in this chapter were joint work with Cedric Chauve and Murray
Patterson [41].

4.1 Including repeat spanning intervals

The result we present here states that if the repeats in an instance are localized to adjacen-
cies or repeat spanning intervals, then the decision problem on this instance can be solved
in polynomial time and space.

Theorem 4.1. Problem 3.1 can be solved for all genome models on an instance (H,µ),
H = (V,E), |V | = n, |E| = m, if every interval is either repeat-free or a repeat-spanning
interval in time O (n+m+ µ̄ρ+ ξ) and O (n+m+ µ̄ρ+ ξ) space, where ξ =

∑
e∈E |e|.

41

The idea behind this result is that every repeat spanning interval can be simulated by
a path in an augmented instance, which we will construct. This construction shall be used
frequently in the next couple of chapters, so we will formalize the notion and prove a lemma
concerning it. This lemma will be a key ingredient in the intractability result in Chapter 6.

Overview of applications. Theorem 4.1 is particularly important from the point of view
of applicability. It tells us that if repeats are only contained in ordered intervals which are
framed by unique markers, it is possible to decide the realizability of the instance. Since
the general decision problem is intractable [208], the class of polynomial time decidable
instances is not very large, which makes this result helpful in many respects. In the absence
of good optimization algorithms, it also provides a simple heuristic for finding a realizable
instance. Assume the realizability of the instance can be decided by Theorem 4.1, and it
is not realizable. We can discard the minimum weight adjacency or interval and decide
realizability for the remaining instance instead. This process can be carried out till a
realizable instance is found. If the data encoded in the instance is of reasonably good
quality, the resulting realizable instance will be close to the optimum solution.

This is especially useful since, at least in the context of reconstructing ancestral genome
maps, it is relatively easy to detect repeat spanning intervals. This can be done via a
parsimonious scheme over the phylogeny of the ancestor under consideration, by finding
extant genomes in which the markers associated to the vertices in the interval occur in a
given order [177]. A repeat spanning interval inferred to have occurred in the ancestor also
merits a certain degree of confidence: it means that a relatively long segment of the genome
has not only been conserved in content, but also in the order that this content is arranged
in.

4.1.1 The equivalence of repeat spanning intervals and paths

Consider an instance (H,µ), H = (V,E) in which the set of repeats contained in repeat
spanning intervals are not contained in any other intervals. Let Ersi ⊆ E be the set of
repeat spanning intervals specified in the instance. This instance is more general than the
hypothesis for Theorem 4.1, which does not have unordered intervals containing repeats.
Results on the more general instance, thus, also hold for instances of the form given in
Theorem 4.1.

We will construct a new instance (H ′, µ′) from (H,µ), where H ′ = (V ′, E′), and the set
E′ of hyperedges does not contain any repeat spanning interval.

Construction

Initialize V ′ = V , E′ = E \ Ersi and µ′ = µ. Iterate over every repeat spanning interval
e ∈ Ersi, such that o (e) = u.r0.r1.rk−1.v, where u, v are non-repeats, and all the ri are

42

r0u r1 r2 v

−1 −1 −1

r10 r11 r12

1

Figure 4.1: Replacing repeat spanning intervals by paths. In this example, the interval
{u0, v0, v1, v2, u2} is a repeat spanning interval associated with the order u0. v0. v1. v2. u1,
and can be replaced by a path as shown. The multiplicity of all repeats used in the order is
decreased by the number of times they occur in the order. In this case, each repeat has its
multiplicity decreased by 1. The red adjacency is deleted once either of r0 or r1 has degree
greater than a constant multiple of its multiplicity, depending on whether they are oriented
or unoriented.

(not necessarily distinct) repeats, and make the following construction. Let S = ∅ be the
set of repeat spanning intervals in Ersi that have been iterated over.

1. Add e to S.

2. For each ri in o (e), add a vertex re,i to V ′, and set µ′ (re,i) = 1.

3. Decrement µ′ (ri) by 1 for all i ∈ [k].

4. For i ∈ {0, 1, . . . , k − 2}, add an adjacency from re,i to re,i+1 to E′.

5. Add adjacencies {u, re,0} and {re,k−1, v} to E′.

6. Delete edges {u, r0} and {rk−1, v}.

7. If the degree of an unoriented repeat ri in H ′ exceeds 2µ′ (ri), delete all adjacencies
to it which are compatible with a repeat spanning interval in S. This can be tracked
by a simple boolean hash table over the set of adjacencies, and does not require the
explicit construction of the set S.

8. If the degree of an oriented repeat ri in H ′ exceeds µ′ (ri)+1, delete all adjacencies to
it which are compatible with a repeat spanning interval in S, except for the adjacency
with its mate ri.

An example of this construction is given in Figure 4.1.
The new instance (H ′, µ′) can be seen to have no repeat spanning intervals, since none

were added to E′ at any step of the construction. In the specific case of Theorem 4.1, this
instance does not have a repeat contained in an interval, since all repeats were themselves

43

only contained in adjacencies or repeat spanning intervals. This is not a requirement of the
following result.

Lemma 4.1. The instance (H,µ), in which repeats contained in repeat spanning intervals
are not contained in other intervals, is realizable in the genome model G if and only if the
instance (H ′, µ′), H = (V ′, E′), is realizable in G and µ′ (v) ≥ 0 for all vertices v ∈ V ′.

This lemma shows a simple but powerful result: if we can decide the realizability of
(H ′, µ′), an instance without repeat spanning intervals, then we can decide the realizability
of (H,µ). In the case of Theorem 4.1, there is a strong structural restriction on the instance.
We know that when all hyperedges are adjacencies, the decision problem is tractable (c.f.
Theorem 3.2), and the only difference is that we are allowing intervals with non-repeats.

The proof of the lemma is relatively simple. One can use the sequence associated to a
repeat spanning interval to restrict the possible genome maps that can serve as realizations
of the instance. Since these sequences can be interpreted as paths, this serves to establish
a correspondence between the realizations of the instance (H,µ), and those of (H ′, µ′).

Proof. Assume (H ′, µ′,) is realizable in G and that µ′ (v) ≥ 0 for all v ∈ V ′. Then there
exists a set of linear/circular sequences on the alphabet of vertices such that every adjacency
e ∈ E′ occurs in a sequence, and no vertex v appears more than µ′ (v) times, i.e. a realization
for the instance. Let this realization be M ′.

Every repeat r ∈ VR maps to a subset of V ′, consisting of r and the vertices added
to V ′ whenever r appeared in a repeat spanning interval. Let φ : V → 2V ′ be this map
(mapping non-repeats in V to their corresponding copies in V ′, and mapping repeats to the
corresponding subset of vertices introduced in V ′, except for the original copy of the repeat
itself), and let φ−1 be the inverse map from vertices in V ′ to V .

The construction specifies that for every e ∈ EI , one introduces a path in H ′ that
corresponds to o (e). Let this path describe the string p = v0. vk−1. Take a substring
s ∈M ′ such that s = p. This substring is guaranteed to exist inM ′, since each vertex in the
path is a non-repeat, and every edge in the path must be compatible with the realization
M ′. Looking at the vertices in this path and applying the inverse map φ−1 to each element
of s yields a sequence of vertices in V which corresponds exactly to o (e). All the other
hyperedges e ∈ E′ are already contained in E. This translates the linear walks in H ′ which
are used to define M ′, into a set of linear walks on H, say M . Thus, every hyperedge in E′

corresponds to a hyperedge in E, or it is an adjacency which is compatible with a repeat
spanning interval in E.

Finally, we need to check the multiplicities of the vertices. Assume, for every repeat
r in V ′, µ′ (r) ≥ 0, and the instance (H ′, µ′) is realizable in G. For a vertex v ∈ V ,
the cardinality of the set φ (v) cannot exceed µ (v), since otherwise, we would have had
µ′ (v) = µ (v)− |φ (v) | < 0. Thus, the number of occurrences of a vertex r ∈ VR in M is

44

at most µ (r). This, combined with the fact that every hyperedge in E is compatible with
M , proves that (H,µ) is realizable in G.

In the other direction, if (H,µ) is realizable in G, we can find a realization such that for
every repeat spanning interval e ∈ EI , the order o (e) appears in this realization. Replace
the repeats in this genome map by new copies having multiplicity 1, as during the algorithm.
This corresponds to a realization of (H ′, µ′), which gives a realization in G, with µ (v) =
µ′ (v) + |φ (v) | as defined before. This ensures that µ′ (v) ≥ 0, since we know that |φ (v) | ≤
µ (v), a fact that is obvious since we can only have at most µ (v) copies of every vertex v in
M , and we are only relabelling them.

Note again that this result is independent of the structure of the instance (H \ Ersi, µ).
This implies that Lemma 4.1 works even if the original instance does not conform to the
structural restrictions of Theorem 4.1.

4.1.2 Decomposing the instance

Let us get back to the original instance of the problem (H,µ), in which we know that
repeats are only present in adjacencies or repeat spanning intervals. Using Lemma 4.1, we
will convert it to an instance in which repeats are only contained in adjacencies. Let this
modified instance be (H ′, µ′), where H ′ = (V ′, E′).

The next lemma shows that if the instance (H ′, µ′) which we constructed is realizable, all
instances defined on connected subhypergraphs induced by non-repeats must be realizable
in a linear or circular genome model. In order to prove this, we start from the following
construction. Let (Hu [Vu] , µu), where Hu (Vu) = (Vu, Eu), be the instance induced on the
vertex set Vu = {v ∈ V ′ : µ′ (v) = 1}, where µu is the restriction of µ′ to Vu. This instance
consists of a set of connected components, with only non-repeats. For each such connected
component C = (V ′c , E′c), with restriction µ′c of µu to V ′c , define an instance (Hc, µc), where
Hc = (Vc, Ec) and a map φc as follows.

1. Initialize Vc = V ′c , Ec = E′c and µc = µ′c.

2. For every repeat r in (H ′, µ′) adjacent to a vertex u in V ′c , add a vertex rc,u in Vc,
µc (rc,u) = 1. Define φc (rc,u) = r.

3. Add adjacencies {rc,u, u} to Ec for all adjacencies {r, u} ∈ E′, and vertices u in V ′c .

The function µc maps all vertices in Vc to 1. Once this procedure is completed for every
connected component C, we get a family of instances which only have non-repeats, and a
set of maps from the repeats in V ′ to the vertices in each instance of this family. Let us call
this family C. We can also define φ−1

c as a map that takes a repeat r and a non-repeat u,
and maps to rc,u if the vertex was introduced during the construction, and to ∅ otherwise.
Then, having defined the family of instances C, we have the following result on it.

45

Figure 4.2: Decomposition of an instance. Each of the circles represents a repeat cluster, and
the connections between them represent non-repeats connecting these clusters. Lemma 4.2
claims that if the entire instance is realizable in some genome model, each of the connecting
non-repeat components form an instance which is realizable in the linear genome model.

Lemma 4.2. If the instance (H ′, µ′) is realizable in a genome model G, then every instance
(Hc, µc), Hc = (Vc, Ec) in the family C must be realizable in the linear genome model.

The claim made in this lemma can be visualized in Figure 4.2.

Proof. Let M be a genome map in G such that M is a realization of (H ′, µ′). Assume
without loss of generality that every repeat in this map appears at least twice. Construct
a set of linear or circular sequencesM′ as follows.

1. Delete all adjacencies in M which do not involve a non-repeat.

2. If there is an occurrence of an undoubled repeat r which is adjacent to two non-repeat
in M , select an arbitrary doubling of r and delete the adjacency between the new
oriented vertices.

3. Delete repeats except those which are adjacent to a non-repeat.

This gives us a set of linear sequences, framed by occurrences of repeats if any. We claim
that for every (Hc, µc) in C, there exists a realization in M ′ ∈ M′ which can be obtained
by relabelling using φ−1

c .
First, notice that every vertex in Vc which is not in the domain of the map φc must be a

non-repeat in V ′. This set of vertices, which we call U , must be contained in a consecutive
subsequence inM′. By definition, the vertices in U form a maximal connected component in
the instance (H [Vu] , µu). If the vertices in U are not present as a consecutive subsequence,

46

there was a repeat r ∈ V ′ \ U such that {r, u} was an adjacency compatible with M which
broke up a consecutive subsequence. But in that case, there is some interval or adjacency
containing u and another vertex v ∈ U which is not compatible with M . This contradicts
the fact thatM is a realization of (H ′, µ′), which proves that such a consecutive subsequence
must exist.

Since every adjacency/interval in Ec induced by U is also present in E′, they must also
be compatible with M ′. Now, for the vertices in the domain of φc, every vertex rc,u, which
is adjacent to u ∈ U , is mapped to a repeat φ (rc,u) ∈ V ′. Since M is a realization for the
instance (H ′, µ′), applying the inverse map φ−1

c (r, u) to every occurrence of such a repeat
in the sequenceM ′ will result in a sequence, say φ−1

c (M ′), such that the adjacency {u, rc,u}
is compatible with it. This proves that all adjacencies and intervals in Ec are compatible
with φ−1

c (M ′).
Another conclusion from this is that there can be at most 2 repeats from V ′ with

corresponding copies in (Hc, µc). Otherwise, there would have to be at least 3 repeat copies
rc,u, r

′
c,v, r

′′
c,w adjacent to 3 vertices, say u, v, w, in U . Since repeats in E′ only occurred

in adjacencies, there is no interval in which all of u,v w and any of the repeat copies
are contained. However, the structure of φ−1

c (M ′) states that u, v and w occur within a
consecutive subsequence of non-repeats, framed by two repeats. An adjacency to a third
repeat from a vertex in U would not be compatible with M .

Clearly, since φ−1 (M′) only consists of linear sequences, the instance (Hc, µc) is com-
patible with a map in the linear genome model. To see that φ−1

c (M ′) is consistent with
(Vc, µc), note that Vc only has non-repeats, and φ−1

c (M ′) has exactly 1 copy of a vertex.
So, φ−1

c (M ′) is be a realization of (Hc, µc) in the linear genome model. This proves the
lemma.

Lemma 4.2 can be used to check if the given instance is not realizable in G.

4.1.3 Putting the pieces together

After checking if each instance in the family C constructed in the previous section is realiz-
able in the linear genome model, we transform (H ′, µ′) into a new instance (H ′′, µ′′), where
H ′′ = (V ′′, E′′), as follows. Recall the set C, containing instances of the form (Hc, µc) as
constructed leading up to Lemma 4.2.

1. Set V ′′ to the union of the repeats and the set of frontier vertices in V ′.

2. Set µ′′ to be the restriction of µ′ on V ′′.

3. Set E′′ to the set of all adjacencies in E′ which only contain vertices in V ′′.

47

4. For all remaining non-repeats u, v ∈ V ′′, if both u and v are found in some instance
(Hc, µc) in C, merge u and v into a single vertex vc, and set µ′′ (vc) = 1. If u or v were
adjacent to any vertex w ∈ V ′′, add the adjacency {vc, w} to E′′.

Note that since the intervals in E′ only involved non-repeats, E′′ only consists of ad-
jacencies. This means that we can check for an Eulerian tour1 in this instance to decide
if it is realizable in G using Theorem 3.2. The exact routine for doing this varies with the
genome model G, but the principle remains essentially the same.

4.1.4 The algorithm

The algorithm can now be specified in very simple terms. Let the input instance be (H,µ),
H = (V,E) in which repeats are only involved in adjacencies or repeat spanning intervals,
and assume we are testing for realizability in the genome model G.

1. From (H,µ), use Lemma 4.1 to create an instance (H ′, µ′) without repeat
spanning intervals. If µ′ (v) < 0 for any vertex v ∈ V ′, return No.

2. In (H ′, µ′), test if every derived instance in the set C, as defined in Lemma 4.2,
is realizable in the linear genome model. If not, return No. This can be done
in polynomial (linear) time and space using Theorem 3.1, since the vertices
in all the instances have multiplicity 1.

3. Contract the instances in C into non-repeats, as specified in the construction
preceding Lemma 4.3, to get an instance (H ′′, µ′′) consisting only of adja-
cencies. Use Theorem 3.2 to check if this instance is realizable in G. If so,
return Yes. Else, return No.

The detailed pseudocode for the algorithm, which specifies the details of all the steps,
is given in Appendix A.

4.1.5 Analysis

Algorithm correctness

The first step of the algorithm follows from Lemma 4.1, which states that a map of the
instances (H,µ) is also a map of (H ′, µ′) and vice-versa. In the second step, if every instance
(Hc, µc) in the set C is realizable in the linear genome model, as stated in Lemma 4.2, then
we can contract these instances into non-repeats, laying the ground for the next step.

1The term ‘Eulerian tour’ may be misleading, because we actually search for an Eulerian tour in an
auxiliary graph which can be constructed in linear time, depending on the genome model being used. An
example was provided in Theorem 3.2.

48

The final lemma specifies a necessary and sufficient condition for the instance (H ′, µ′) to
be realizable in genome model G, given (H ′′, µ′′) and the results of checking if every instance
(Hc, µc), as defined for Lemma 4.2, is realizable.

Lemma 4.3. (H ′, µ′) is realizable in genome model G if and only if (H ′′, µ′′) is realizable
in genome model G and each instance (Hc, µc) is realizable in the linear genome model.

Proof. Consider a map M for (H ′, µ′). In this map, Lemma 4.2 proves that each instance
(Hc, µc) must be realizable in the linear genome model. So, we can find a consecutive
substring of non-repeats corresponding to a realization of (Hc, µc) in M . Contract this
substring into a single vertex vc. This gives a realization of (H ′′, µ′′) in the genome model
G, since it contains all the adjacencies in E′′, and the number of vertex occurrences does
not increase.

In the other direction, consider a realization M ′′ of (H ′′, µ′′) in the genome model G. A
realization Mc of every (Hc = (Vc, Ec) , µc) is framed by copies of vertices corresponding to
repeats in V ′ under the map φc. Remove these framing vertices to get a linear sequence
M ′c, and replace the occurrence of vc in M ′′ by the sequence M ′c.

This gives a map M which is consistent with (V ′, µ′), since each repeat v occurs at
most µ′′ (v) = µ′ (v) times, and each non-repeat occurs exactly once. Furthermore, every
adjacency which was present in E′′ was also present in E′, and is compatible with the new
map. The rest of the adjacencies and intervals were present in Ec, and are also compatible
with the map. Thus, the new map is a realization of (H ′, µ′).

Using Lemma 4.3, if all the instances in C and the instance (H ′′, µ′′) have been verified
to be realizable, the instance (H ′, µ′) is proved to be realizable in the model G, which in
turn implies that (H,µ) is realizable in G.

Algorithm complexity

Assuming we have |VR| = ρ and µ̄ = maxv∈VR µ (v), we can observe that we add at most ρµ̄
new vertices to get the hypergraph H ′ = (V ′, E′) in the first step of the algorithm. We also
add 2 edges per new vertex. So, we can conclude that |V ′| = n+ µ̄ρ, and |E′| = m+ 2µ̄ρ,
where n,m are the number of vertices and hyperedges in the input. In general, µ̄ << n,m,
so the instance can be constructed in time and space linear in its size. Since we need only
iterate through the repeat spanning intervals, and check their content, the time taken can
be at most O (m+ 3µ̄ρ).

The second step, which checks if all instances (Hc, µc), as defined in Lemma 4.2, are
realizable in the linear genome model, can be performed in time and space linear in the size
of the instance. This is because the total number of vertices in these instances is of the order
of |V ′|, and no adjacencies or intervals are added. Then, we can use Theorem 3.1 to check if

49

each of them is realizable or not, and this routine runs in linear time and space [24], having
a time complexity of at most O (n+m+ ξ − ρ), where ξ =

∑
e∈E |e|. The contraction of

the non-repeats and the intervals can be performed in time linear in the number of instances
in the set C, which can be at most the number of non-repeats in the instance, and we do
this for all such instances. So, the instance (H ′′, µ′′) can be constructed in time O (n− ρ).

We finally have to check if there is an Eulerian cycle in the instance H ′′, µ′′. This can be
done in linear time and space, i.e. O (|V ′|+ |E′|) (since |V ′′| ≤ |V ′| and |E′′| ≤ |E′|) [84]. So,
one can check for Eulerian cycles, in (H ′′, µ′′), in time O ((n+ µ̄ρ) + (m+ 2µ̄ρ)), i.e. poly-
nomial in the size of the input. So, the total time complexity is O (3n+ 3m+ 6µ̄ρ+ ξ − 2ρ),
or, dropping the negative term and absorbing the constants, O (n+m+ µ̄ρ+ ξ).

The space complexity can be similarly bounded. We already know that the number of
vertices and edges in H ′ = (V ′, E′) is n+ µ̄ρ and m+2µ̄ρ respectively, while the cumulative
size of the instances (Hc, µc) is guaranteed to be at most n + m + ξ. The final instance
(H ′′, µ′′) also has at most n + µ̄ρ vertices and at most m + 2µ̄ρ edges. So, assuming that
we do not reuse any space and by absorbing the constants in the notation, the total space
complexity is O (n+m+ µ̄ρ+ ξ). Note that this is a gross overestimate, since ideally the
instance (H ′′, µ′′) will be much smaller than (H,µ), and each (Hc, µc) can be collapsed once
it is checked if the instance is realizable in the linear genome model.

4.2 Fixed parameter tractability of realizability

The next result is of a more theoretical nature. It provides an algorithm that decides
if an instance is realizable in a given genome model, with the runtime complexity being
polynomial provided that the number of repeats and the maximum multiplicity are bounded.

Theorem 4.2. Let (H,µ) be an instance in which µ̄ = maxv∈V µ (v), ρ is the total num-
ber of repeats in the instance, ∆e is size of the largest hyperedge, and ∆v is the maxi-
mum degree of a vertex. Let ξ =

∑
e∈E |e| be the sum of the sizes of all hyperedges. It is

possible to decide if the instance (H,µ) is realizable in the linear genome model with time
complexity O

(
(∆v(∆e + ρµ̄))2ρµ̄ (∆e + µ̄ρ) (n+m (1 + µ̄ρ) + 3ρµ̄+ ξ)

)
and space complex-

ity O (n+m+ µ̄ρ (m+ 3) + ξ).

The complexity is exponential, as expected. However, the exponent itself only depends
on the number of repeats and the multiplicity, and not on the size of the hyperedges. This is
expected behaviour; after all, in the absence of repeats, the problem is solvable in polynomial
time. From a practical point of view, though, this means that as long as the number of
repeats is small, and the multiplicity function is bounded, we can use a reasonably naive
algorithm to decide Problem 3.1 on the input instance. Notably, this result holds for the
linear genome model, and since both the circular and the mixed genome models are weaker,

50

3

2

Figure 4.3: Constructing an instance without repeats. Each repeat, represented by circular
vertices, is replaced by as many non-repeats as its multiplicity, as in the case of the green
and red vertices added here. For each such new vertex, 2 ‘neighbours’ are chosen, as per a
mapping, defined in (4.1). This defines a set of new edges, which we call f -edges. Here,
the f -edges are depicted as dashed edges. In this particular case, the resulting hypergraph
forms a cycle, and is thus not realizable in the linear genome model. However, there may
be another set of f -edges for which the resulting instance is realizable.

they too can be decided by the following algorithm, as can the realizability of an instance
with ordered intervals.

The main idea of the algorithm is to transform the input instance into an instance where
the multiplicity function maps vertices to 1. Then, one can use Theorem 3.1 to check if the
modified instance is realizable in the linear model (i.e. checking if it has the C1P). Here is
where the notion of repeat clusters proves to be useful again. If we had no idea of where the
repeats will occur, we would have to check all possible sequences that can be created using
µ (v) copies of a vertex v. But repeat clusters localize the concentration of repeats, and this
lets us restrict the number of sequences to generate, while the non-repeats somehow make
the remaining instance ‘rigid’.

4.2.1 Constructing repeat-free instances

Let (H,µ), H = (V,E) be the input instance. Note that for every repeat v ∈ VR in this
instance, if there exists a realization in the genome model G which contains λv < µ (v)
occurrences of v, then there is a realization which contains µ (v) occurrences in G as well.
This is a trivial observation- take the original realization with λv occurrences of v, and
simply concatenate µ (v)− λv more copies of v to any one of the original occurrences. For
oriented vertices, concatenate µ (v) − λv occurrences of the string v.v̄ and insert it at the
original occurrence position instead.

The point of the above observation is that it is sufficient for us to find a realization which
has µ (v) occurrences of every vertex v ∈ V . We shall create a set of instances (Hf , µf),

51

where Hf = (Vf , Ef), in which the function µf maps all vertices in the set Vf to 1. Vf is
defined as follows.

Vf = (V \ VR) ∪
⋃
v∈VR

R′ (v) ,

where the set R′ (v) is defined for a repeat v ∈ VR as {vi : v ∈ VR, 0 ≤ i < µ (v)}. Let
R′ =

⋃
v∈VR R

′ (v).
The open neighbourhood of a vertex v ∈ V , denoted by N (v), is the set of all vertices in

V , excluding v, which appear in some hyperedge in E which also contains v. The modified
neighbourhood of v ∈ V is the following set.

N ′ (v) = {u ∈ V \ VR : u ∈ N (v)} ∪
⋃

w∈(VR∩Nv)∪{v}
R′ (w) .

In a genome map which contains all vertices in Vf exactly once, every vertex must be
adjacent to at least 1 and at most 2 other vertices in the map. On the basis of this, we
can allocate ‘neighbours’ to each vertex, their predecessor and successor in the sequence
corresponding to the map. For every repeat vertex v ∈ VR, we can define this relation as
the following mapping.

fv : R′ (v)→ Sv, (4.1)

where Sv = {{u0, u1} : u0, u1 ∈ N ′ (v) ∪ {∅}}, which associates the vertices in R′ (v) to their
adjacent vertices in the sequence. We use f : VR → S′ to denote the map obtained by taking
the union

⋃
v∈VR fv, where S

′ =
⋃
v∈VR Sv. The map can be represented as a set of edges

between the vertices in R′ (v) and those in N (v) for all v ∈ VR, as shown in Figure 4.3.

4.2.2 The algorithm

We now describe the main algorithm. The algorithm includes the complete description of
the hypergraphs Hf = (Vf , Ef) for all f , and specifies the choice of edges.

52

1. Define Vf = (V \ VR) ∪
⋃
v∈VR R

′ (v). Set µf (v) = 1 for all v ∈ Vf .

2. For each repeat v ∈ VR, choose a mapping fv : R′ (v) → Sv as defined in
(4.1). This defines a map f : VR → S′.

3. For a given vi ∈ R′ (v) for a repeat v ∈ VR, if f (vi) = {u0, u1} (where one
or both of u0 and u1 may be empty vertices), add the edges {vi, u0} and
{vi, u1} to Ef . Call the set of edges added f -edges.

4. For each edge e ∈ E, add an edge e′ = e \ VR to Ef .

5. For each vertex u ∈ Vf \R′ which is adjacent to a vertex v0 ∈ R′, there exists
a unique path u.v0.vk−1.w, where all vi ∈ R′ for all i ∈ [k], u,w ∈ Vf \R′,
and each of

{
u, v0}, {vk−1, w

}
and

{
vi, vi+1}, i ∈ [k − 1] are f -edges. Add

all vi in this path to each e ∈ Ef such that u ∈ e. By symmetry, each of the
vi are also contained in e ∈ Ef such that w ∈ e.

6. For each e ∈ E, check if the corresponding edge e′ which was added to Ef has
vertices from R′ (v), where v ∈ VR ∩ e. If not, continue to the next mapping
f .

7. Use Theorem 3.1 on (Hf , µf) to check for realizability in the desired genome
model. If the algorithm returns Yes, output Yes and exit.

8. Iterate over all possible sets of neighbours in Step 2.

9. Output No if there is no instance (Hf , µf) which is realizable in the genome
model.

4.2.3 Analysis

Algorithm correctness

We base the correctness of the algorithm on the following claim.

Claim. (H,µ) has a realization in the genome model G if and only if there exists f such
that (Hf , µf) has a realization in G.

In order to prove this claim, let us first assume that the instance (H,µ) is realizable in
G, and that there exists a realization M of the same. In this realization, we may assume
that every vertex v ∈ V appears exactly µ (v) times. Otherwise, as stated before, we can
add tandem copies of a vertex next to a known occurrence of it inM without destroying any
adjacencies or intervals. Alternately, we could just add these copies as a separate sequence,
without modifying M . Once this is done, replace the occurrences of a repeat vertex v ∈ VR

53

by copies vi ∈ R′ (v), where R′ (v) = {vi : 0 ≤ i < µ (v)}. This yields a new map, M ′.
Clearly, the vertices occurring in M ′ are exactly the vertices in the vertex set Vf . Note that
this holds irrespective of the choice of f .

We will show that M ′ is the realization of a particular instance (Hf , µf) which we
construct in the algorithm. In M ′, each vertex in the set R′ is adjacent to either 1 or 2
vertices. Thus, for every vi ∈ R′, there is a map vi 7→ {u′, u′′}, where u′, u′′ ∈ Vf ∪ {∅}.
This defines the map f , which can be partitioned into fv according to the repeats v ∈ VR.
The map f also uniquely defines the instance (Hf , µf) which we shall prove is realizable in
G with realization M ′. First note that M ′ is certainly consistent with (Vf , µf), since every
vertex in Vf occurs exactly once in M ′, the necessary condition enforced by the all-ones
multiplicity function µf .

It only remains to see that the set of edges Ef is compatible with M ′.

1. The f -edges in the instance must be compatible with M ′, since they are precisely the
edges defined by the map f .

2. All hyperedges e ∈ Ef which only contain vertices from Vf \ R′ must be compatible,
as they correspond to hyperedges in (H,µ) which did not contain any repeats.

3. For the rest of the edges, which were constructed in Step 5 of the algorithm, the vertices
in these edges are precisely the copies of repeats which were present in the analogous
hyperedges in (H,µ), along with vertices that form chains of f -edges. Otherwise, they
are discarded in Step 6 since some vertex in the edge is missing. Since the original
hyperedges were compatible with M , and each f -edge is also compatible with M ,
these hyperedges must be compatible with M ′.

This proves that (Hf , µf) is realizable in G, which concludes the first part of the proof.
In the other direction, let us assume that there is an instance (Hf , µf) which is realizable

in G, and has realization M ′. This realization contains all vertices in V \ VR, and vertices
in R′ (v) for repeats v ∈ VR. Replace every occurrence of vi ∈ R′ (v) in M ′ by v for every
v ∈ VR to get the map M . Since there were at most µ (v) vertices in R′ (v), the vertex
v does not appear more often than µ (v) times in M . To check that all edges in E are
compatible with M , we observe the following.

1. Every edge e ∈ E which consists only of vertices from V \ VR is compatible with M ,
since it was compatible with M ′.

2. For every other edge e ∈ E, if there exists a repeat v ∈ e, then there exists an edge
e′ ∈ Ef such that there is a copy vi ∈ R′ (v) which is in this edge. This is assured by
Steps 5 of the algorithm, since every vi which is in a path of f -edges with one end
in e′ is also contained in e′. Since the neighbours of vi are assured to be in N ′ (v),
this means that the compatibility of e′ translates into the compatibility of e with M .
Otherwise, the map f is skipped, and we do not check it, as we can see in Step 6.

54

This proves that (H,µ) is realizable in G, which finishes the claim and the proof of correct-
ness.

Algorithm complexity

The main complexity follows from the number of possible mappings f that can be used to
construct the auxiliary instances (H,µf). These mappings denote choices of neighbours for
each of the vertices in the set R′. If µ̄ is the maximum value attained by the multiplicity
function, we get a total of µ̄ρ vertices in R′. If each vertex is contained in at most ∆v

edges, and each edge contains at most ∆e vertices, the number of mappings f is at most
O
((∆v(∆e+µ̄ρ−1)

2
)µ̄ρ)

. We can cycle through these mappings by iterating through the list
N ′ (v) for every repeat v ∈ VR and allocating 2 neighbours (or 1 neighbour and a null
element) to each vertex in R′ (v), which is where the exponential complexity arises from.
There are many ways to enumerate the set of mappings f , including probabilistic methods
which can be derandomized [4, 165].

One non-probabilistic way to implement it is to construct a graph consisting of all ver-
tices in Vf , and edges from each vertex in R′ (v) for a repeat v, to all vertices in Sv. A
maximal 2-matching in this graph, using the notation of Dessmark et al. [58], corresponds
to a single mapping f , since it associates every vertex to 2 adjacent vertices. The problem
of listing all such mappings is the same as that of iterating through the maximal matchings
in this graph. There are algorithms that can do this in time proportional to the num-
ber of matchings times the maximum degree of the graph [123, 203], which is the same as
the number of mappings times the maximum number of vertices in an edge in the con-
structed instance, which is ∆e + µ̄ρ. So, the set of mappings can be enumerated in time
O
((∆v(∆e+µ̄ρ−1)

2
)µ̄ρ

(∆e + µ̄ρ)
)
.

Following this, the actual translation to the instance (Hf , µf) is relatively cost-efficient.
The set Vf only needs to be constructed once, and can be done in time O (µ̄ρ). The
construction of the set Ef can be done by first iterating through the set of hyperedges in
E, and then iterating through the function f in order to add the f -edges and allocate the
vertices in vi to the added edges. The number of vertices from V ′ added in an edge e ∈ Ef
is at most µ̄ρ, and we do this for every edge in Ef which is not an f -edge. Finally, using
Theorem 3.1, the total time taken to test the constructed instance for realizability in the
genome model G is in the order of O (n+ ρ (µ̄− 1) +m+ 2µ̄ρ+ ξ +mµ̄ρ). Iterating over
all the O

((∆v(∆e+µ̄ρ−1)
2

)µ̄ρ)
possible maps f , and ignoring constants, we get a runtime in

the order of O
(
(∆v(∆e + ρµ̄))2ρµ̄ (∆e + µ̄ρ) (n+m (1 + µ̄ρ) + 3ρµ̄+ ξ)

)
.

For space complexity, note that Vf = n+ µ̄ρ and Ef = m+ 2µ̄ρ. Since the cumulative
size of the hyperedges is at most ξ+mµ̄ρ, the space complexity for deciding the realizability
of the instance (Hf , µf) is O (n+m+ µ̄ρ (m+ 3) + ξ). In order to iterate over all mappings
f , instead of listing them all, they can be constructed on the go, as stated above. So, the

55

total space needed is O (n+m+ µ̄ρ (m+ 3) + ξ).

4.3 Improving decision algorithms

Theorem 4.1 proves to be a useful algorithm in its own right, as we shall see in later chapters.
However, it relies greatly on the structure of the repeats in the instance. In the absence of
repeat spanning intervals, deciding realizability becomes much more problematic, since we
need to resolve both the internal order of the markers in a map and the ambiguity in the
instance. It would be useful to have a more relaxed definition of repeat spanning intervals,
one which can incorporate a little uncertainty in the associated sequence and yet capture
the essential information for allowing a decision algorithm.

Theorem 4.2 is a relatively simple algorithm for deciding the realizability of an instance
in a given genome model, but it comes at the cost of exponential runtime. There are
many techniques in the theory of fixed parameter and exponential algorithms which allow
increased performance [165], but they do not seem to be trivially applicable here. A signifi-
cant improvement in performance would be a welcome addition to the toolbox of algorithms
for deciding realizability. Indeed, even if the runtime is exponential, biological data often
presents structure which can be exploited to make sure the runtime is still bounded. An
alternate approach would be to parameterize by arguments other than the number of re-
peats and maximum multiplicity. A natural parameterization is not immediately obvious,
and would be another useful equipment in the toolbox.

56

Chapter 5

Partial optimization problems on
genome maps

Theorem 3.7 tells us that optimizing over an instance which contains intervals is NP-hard,
even when the multiplicity function maps all vertices to 1. This holds independently of the
genome model being used as well. So do we have no chance of disambiguating repeats using
intervals?

From a practical perspective, of course, there are other resorts to this problem. As we
mentioned in the previous chapter, we can always use heuristics to resolve the problem, by
discarding intervals until a good subset is found. Alternately, when the multiplicity function
maps all vertices to 1, there are FPT algorithms that can be used [65].

This chapter and the next present results on a different take on the issue. We define
a modified optimization problem, which we motivate through the fact that Theorem 3.7
presents a positive tractability result for optimization when an instance only consists of
adjacencies [138]. We show that under certain strong but practically useful conditions on
the intervals, this problem can be solved in polynomial time, but the general problem is
NP-hard. The result in this chapter was proved in collaboration with Cedric Chauve and
Murray Patterson [41]. The conditions we impose on the intervals were suggested by Eric
Tannier.

5.1 Partial optimization

Our solution to this problem is to use the tractability result in Theorem 3.7 to first find a
set of good adjacencies such that the resulting instance is realizable. We take this instance
as a skeleton, in that we look for a genome map that is a realization of this instance. By
doing this, we can restrict the search space of genome maps by a considerable amount.
Then, we try to find a maximum weight set of repeat spanning intervals that is compatible
with at least one of these maps.

57

5.1.1 Formal definition and motivation

We state the problem as follows.

Problem 5.1. Let (H,µ,w), where H = (V,E), be an instance such that (HA, µ, wA) is
realizable in a given genome model G. Let EI ⊆ E be the set of intervals, such that each
e ∈ EI is a repeat spanning interval. Find a maximum weight subset S ⊆ EI such that the
instance (H ′, µ, w′), where H ′ = (V,EA ∪ S) is realizable in G.

The problem is a workaround to Problem 3.2, based on the fact that Theorem 3.7 offers
an easy to implement algorithm for optimizing on adjacencies to obtain realizability in the
mixed genome model. The point of the problem is to accept that the adjacencies that result
from the first optimization step do indeed appear in the genome map that we want, and
to use the set of repeat spanning intervals to pinpoint a less ambiguous map. The obvious
question we have now is: can this be done efficiently?

One filter for the repeat spanning intervals is obvious. We want the realizations of the
output instance to be a subset of those of the input instance. This means that if there
is a repeat spanning interval e such that o (e) = u.r0.ri.rjrk.v, and there is no
adjacency between the vertices ri and rj in the original instance, then e cannot be present
in an optimal set S. Using this, we can immediately discard repeat spanning intervals which
would lead to such missing adjacencies. In this chapter and the next, we will always assume
that the set of repeat spanning intervals is already filtered as explained.

We do have another advantage over Problem 3.2. The underlying adjacency instance
of the input is known to have a realization in a chosen genome model. This is a strong
structural restriction, one which we wish to exploit, and indeed plays a key role in the
algorithm we shall present in this chapter.

Overview of applications. Problem 3.2 is aimed at resolving the two main problems
brought about by repeats: genome map ambiguity and repeat organization. Repeat span-
ning intervals provide very specific information regarding repeats. Since they are ordered
intervals, they carry information regarding repeat organization in a genome map. At the
same time, being framed by non-repeats means that they fix the order in which two non-
repeats appear. In effect, they point to an ‘adjacency’ between the non-repeats, or in other
words, they predict that the unique markers corresponding to these vertices, when appear-
ing on a genome map, can only have repeats from a single repeat cluster between them on
the map, and no other markers.

Since repeat spanning intervals are highly structured, ideally one would like to be able to
optimize over them to get a realizable instance in a given genome model. Then, a realization
for the instance would be a genome map in which we have at least some organization in
the order of the repeats, and hopefully most of the ambiguities can be removed. This is

58

particularly helpful when we can infer repeat spanning intervals efficiently, as is the case in
certain problem in palaeogenomics [177].

5.1.2 Multidimensional knapsack problems

Problem 5.1 is closely related to the multidimensional (0, 1)–knapsack problem, which can
be stated as follows.

Problem 5.2. Let X = {x0, . . . ,xn−1} be a set of n vectors in Zd≥0, and let w : X → R+

be a weight function on the vectors. Then, given a vector y ∈ Z≥0, find a solution to the
following integer linear program.

max
{b0,...,bn−1}

∑
i∈[n]

biw (xi)

subject to

bi ∈ {0, 1} ∀i ∈ [n] ,∑
i

bixi,j ≤ yj ∀j ∈ [d] .

This problem is NP-hard in general [113].
Problem 5.1, at a first glance, seems to be closely related to this problem. Each repeat

spanning interval can be associated with a vector indexed by the vertices in the repeat
cluster it spans. The vertices in this repeat cluster are the only ones that can be contained
in a repeat spanning interval spanning it. The entry indexed by a vertex v in this vector
will be the number of times v occurs in the order associated with that repeat spanning
interval. Then, it almost seems a matter of formality to use this structure and conclude
that Problem 5.1 is NP-hard as well. But there are two complications. First, the hardness
for the multidimensional knapsack problem does not include structure that may arise from
oriented vertices. In fact, we will exploit this structure to get a tractability result later in
this chapter. Furthermore, we will see in Chapter 6 that there is a subtle technicality in
Problem 5.1, arising out of the fact that we need to preserve all the adjacencies that were
already present in the instance. We shall elaborate on this technicality in the next chapter,
when we design a fixed parameter algorithm for the problem.

5.2 Tractability

Problem 5.1 can be solved in polynomial space and time as long as the repeat spanning
intervals are minimal, and all frontier vertices correspond to oriented markers. Recall that
minimal repeat spanning intervals are those whose associated sequence contains a single
occurrence of an unoriented repeat, or a single occurrence of two oriented repeats which are

59

each other’s mates, framed by two non-repeats. This is the smallest possible type of repeat
spanning interval, since no other repeat occurrences are possible within it.

Theorem 5.1. Problem 5.1 can be solved in polynomial time and space for the mixed
genome model if all the repeat spanning intervals are minimal and are framed by oriented
non-repeats.

Why is this result useful? While it is true that the immediate scope of the result seems
small, we have to remember that repeats give rise to two different issues: genome map
ambiguity and uncertainty in internal repeat organization. In the absence of very long
syntenic information containing repeats, neither problem can be resolved.

However, it is often easier to get unordered interval data, and the instance may contain
a number of ‘partly ordered’ intervals, in which we know that repeats from a specific repeat
cluster in an adjacency instance are present. For example, we may always see a set of unique
markers which are separated in the genome by a set of repeat markers which change only
in order, or in which there are minor changes in content. We can infer that, barring some
insertions, deletions and substitutions within the set of repeated markers, the sequence in
this region is mostly conserved.

Knowing this, we can collapse the repeat cluster consisting of the vertices corresponding
to the repeats we always find between the non-repeats into a single unoriented ‘repeat’
vertex. This allows us to define repeat spanning intervals that span this repeat. Optimizing
over the set of repeat spanning intervals now implies that we are fixing an order for traversing
this repeat cluster, which in turn refers to removing ambiguity in the genome map. So at
least one of the problems due to repeats can be addressed in this manner. Such techniques
have been used in genome assembly frameworks to remove ambiguity in the construction of
assemblies, but have used a less formal framework [209,214].

The proof for Theorem 5.1 proceeds in two stages. In the first stage, we prove a simple
lemma which restricts the number of repeat spanning interval a repeat can occur in, de-
pending on the number of vertices it is adjacent to. The second stage uses the structure of
the instance to pose a strong condition on the number of repeat spanning intervals a vertex
can occur in, assuming that the conditions of Problem 5.1 are satisfied. This key result
uses the realizability of the underlying instance on adjacencies in order to understand the
structure of the set S of repeat spanning intervals that must be retained.

A corollary to Theorem 5.1 is the following statement.

Corollary 5.1. Problem 5.1 can be solved in polynomial time and space for the mixed
genome model if all non-repeats are oriented, and the maximum number of vertices in a
repeat cluster is 1 if the repeat is unoriented, and 2 if the repeats in it are oriented.

This corollary follows immediately from the fact that if the repeat cluster has only 1
unoriented vertex, or 2 oriented vertices, every repeat spanning must be minimal.

60

5.2.1 Constraints due to non-involved adjacencies

Consider a repeat v which is adjacent to a vertex x in the given instance. An important
constraint in Problem 5.1 is that the adjacency {v, x} must be compatible with a realization
of the output instance. This serves as a cap on the number of repeat spanning intervals
involving a given repeat, and is the basis for the following result.

Lemma 5.1. Let (H,µ,w), H = (V,EA ∪ EI) be a realizable instance in the mixed genome
model, such that every interval in EI is a repeat spanning interval. If v ∈ VR is adjacent
to a vertex set X, such that for every x ∈ X, x and v do not appear together in any repeat
spanning interval in EI , then

1. if v is an oriented repeat, it can appear in at most µ (v)−|X| repeat spanning intervals
in EI , and

2. if v is a non-oriented repeat, it can appear in at most µ (v)−d|X|/2e repeat spanning
intervals in EI .

Proof. First assume that v is an oriented repeat. Let X be the set of vertices adjacent to
v, and let x ∈ X be one such vertex. There are two possible cases.

1. x is a repeat. If so, either x = v or it is not the mate of v. Unless it is the mate of v,
it cannot be in a minimal repeat spanning interval which contains v, and since there
is no repeat spanning interval containing both x and v, we can rule out that x = v.

2. x is a non-repeat.

Now, note that the edge {x, v} does not appear in a repeat spanning interval, since,
by the hypothesis, there is no repeat spanning interval containing both x and v. Thus, in
order for this edge to be compatible with a realization of the instance (H ′, µ, w′), where
H ′ = (V,EA ∪ S) and S ⊆ EI , it must be contained in EA, as it cannot be compatible
with any repeat spanning interval in S. In order to maintain realizability, there must
be an occurrence of v in the realization which is dedicated solely to make sure {x, v} is
compatible. This occurrence must also be adjacent to v, since v is an oriented repeat. So,
it is not possible that this occurrence of v forms part of a consecutive substring verifying
the compatibility of other adjacencies or repeat spanning intervals. This is shown visually
in Figure 5.1a. Thus, the number of remaining copies of v which can be used up in repeat
spanning intervals is µ (v) − 1. Performing this analysis for all vertices x ∈ X, we can
conclude that we need to allocate |X| copies of v for making sure that the adjacencies to
vertices in X are all compatible. So, only µ (v) − |X| copies remain which can correspond
to occurrences of v in repeat spanning intervals. This proves the first part of the lemma.

If v is an unoriented repeat, the {v, x} must still be compatible with a realization of
the instance (H ′, µ, w′), where H ′ = (V,EA ∪ S) and S ⊆ EI is an optimal set of repeat

61

v v

u0

u1

x0

x1

u4

u5

1

(a) Oriented repeats

v

x0

u0 x1

u1 u2

1

(b) Unoriented repeat

Figure 5.1: If a repeat is adjacent to a vertex which is not in a repeat spanning interval, a
copy of that repeat must be ‘reserved’ in order to make sure this adjacency is compatible. In
the first figure, such a situation is shown for oriented repeats. In this case, the adjacencies
{v, x0} and {v, x1} can be removed after decreasing the multiplicity of v and v by 1. In the
second figure, {v, x0} , {v, x1} can both be removed after reducing the multiplicity of v by
1.

spanning intervals. Since {v, x} is not compatible with any repeat spanning interval in
EI , an occurrence of v must be dedicated to making sure that {v, x} is compatible with a
realization. This occurrence cannot form part of a repeat spanning interval, since otherwise
the vertex x would have to be in the interval. Unlike the oriented case, however, it is
possible that this occurrence also forms part of another adjacency. This is because v is
unoriented, and is not constrained to be adjacent to its mate in the realization, as shown
in Figure 5.1b. This vertex too cannot be part of a repeat spanning interval containing v.
Thus, the occurrence is shared across two adjacencies, and we need to ‘reserve’ only 1/2
copies of v per adjacent vertex in X. This lets us deduce that at most µ (v)−d|X|/2e copies
of v can occur in repeat spanning intervals.

A consequence of this result is that we can modify the instance (H,µ,w) as follows.

1. For every repeat v, find the set of vertices X that it is adjacent to, and which do not
occur with v in repeat spanning intervals.

2. For every oriented repeat, reduce the multiplicity of v to µ (v) − |X|, and delete all
edges from v to X.

3. For every unoriented repeat v, reduce the multiplicity of v to µ (v) − d|X|/2e, and
delete all edges from v to X.

62

In the rest of the chapter, we will always assume that the instance has been modified
as stated above. That is, no instance to the problem has a repeat v which is adjacent to a
non-repeat which is not contained in a repeat spanning interval or to another repeat apart
from, possibly, v.

5.2.2 Bounding the number of repeat spanning intervals through repeats

Assume we are given a set S ⊆ EI such that the instance (H ′, µ, w′), with H ′ = (V,EA ∪ S),
is realizable in the mixed genome model. The next lemma shows that the structure of this
set S is controlled by the fact that the underlying adjacency instance is realizable, and
further restricts the number of repeat spanning intervals involving a vertex v ∈ V . The
naive bound for this is µ (v) in general, and actually 2 for unoriented non-repeat. But
Theorem 5.1 assumes that there are no unoriented non-repeat framing repeat spanning
intervals. This helps us get tighter bounds.

Lemma 5.2. Let (H,µ,w) H = (V,E) be an instance such that (HA, µ, wA) is realizable in
the mixed genome model, and EI is a set of repeat spanning intervals with properties as stated
in Theorem 5.1. Then, given S ⊆ EI , the instance (H ′, µ, w′), where H ′ = (V,EA ∪ S) is
realizable in the mixed genome model if and only if S has the following structure.

1. A non-repeat u ∈ V appears in at most 1 repeat spanning interval in S,

2. An oriented repeat v ∈ VR appears in at most min {degHA (v)− 1, degHA (v)− 1}
different repeat spanning intervals in S.

3. A non-oriented repeat v ∈ VR appears in at most µ (v) different repeat spanning in-
tervals in S.

Proof. Let us first determine the structure of S by assuming that (H ′, µ, w′) is realizable in
the mixed genome model. We first prove the following claim, which is the first part of the
lemma.

Claim. There is at most 1 repeat spanning interval in S containing a non-repeat u.

This is a direct consequence of the fact that non-repeats involved in a repeat span-
ning interval are oriented. Consider one such vertex u ∈ V which is contained in some
repeat spanning interval. Being oriented, u must also be adjacent to u in a realization of
(HA, µ, wA). Since it is a non-repeat, u can only be adjacent to 1 other vertex apart from
u. Let such a vertex exist, and be called v. Then, u can frame at most one repeat spanning
interval, which must contain v.

The other two results in the lemma are consequences of this bound on the number of
repeat spanning intervals using a non-repeat, and the fact that the repeat spanning intervals
are minimal.

63

Claim. An oriented repeat v ∈ VR, can appear in at most min
{
degHA (v)− 1,degHA (v)− 1

}
different repeat spanning intervals in S.

The instance (HA, µ, wA) is realizable in the mixed genome model. This means that
both v and v can only be adjacent to at most µ (v) vertices in HA, apart from each other.

In the set S, any repeat spanning interval containing v must also contain v. From the
previous claim, the non-repeat neighbours of v and v can each be contained in exactly 1
repeat spanning interval each. Since a repeat spanning interval containing v and v must
be framed by 1 neighbour of v and one of v, the number of repeat spanning intervals in S
containing v must be limited by min {degHA (v)− 1, degHA (v)− 1}, where the −1 accounts
for the edge {v, v}. Let this quantity be called τv.

Claim. An unoriented repeat v ∈ VR can appear in at most µ (v) different repeat spanning
intervals in S.

Using the fact that (HA,m,wA) is realizable in the mixed genome model, we can con-
clude that a non-oriented repeat v can be adjacent to at most 2µ (v) vertices. Since each
non-repeat can be contained in at most 1 repeat spanning interval, we can have at most
µ (v) repeat spanning intervals which contain v, by pairing non-repeats into framing vertices
of repeat spanning intervals. Note that this is the only case where the worst-case bound of
µ (v) repeat spanning intervals containing v is not improved.

This concludes the forward direction of the lemma. In order to prove the opposite
direction, we will explicitly construct a realization of (H ′, µ, w′). To do this, we will use
a variant of the construction specified in Lemma 4.1. Initialize the instance (H ′′, µ′, w′′),
with H ′′ = (V,E′′) to be the same as the instance (HA, µ, wA). For every repeat spanning
interval e ∈ S which spans an oriented repeat, such that o (e) = u.r.r.v, where u, v are the
non-repeats framing r and r, which are oriented repeats, perform the following operations.

1. Add the edge {u, v}e, labelled by e, to E′′.

2. Decrement µ′ (r) and µ′ (r) by 1.

3. Delete the edges {u, r} and {v, r}.

For every repeat spanning interval e ∈ S which spans an unoriented repeat, such that
o (e) = u.r.v, where u, v are non-repeats framing the repeat r, perform the following oper-
ations.

1. Add the edge {u, v}e, labelled by e, to E′′.

2. Decrement µ′ (r) by 1.

3. Delete the edges {u, r} and {v, r}.

64

The output is the instance (H ′′, µ′, w′′), which has no repeat spanning intervals. Note
that the weight function w′′ does not play any role in the following proof, and so we can
set it to map all edges in E′′ to 1.

We make the following claim.

Claim. The instance (H ′, µ, w′) is realizable in the mixed genome model if and only if the
instance (H ′′, µ′, w′′) is realizable in the mixed genome model.

Let us first prove that (H ′′, µ′, w′′) is realizable in the mixed genome model. We examine
the local structure around each vertex in this instance, and conclude that this structure is
sufficient to admit a realization.

1. Every non-repeat u ∈ V was contained in at most 1 repeat spanning interval in S. The
degree of u in H ′′ remains either unchanged, or it is incremented and decremented by
1 while considering the repeat spanning interval that u is contained in. So, the degree
of u in H ′′ is still at most 2.

2. Assume that an oriented repeat v ∈ VR is contained in λv ≤ τv ≤ µ (v) repeat spanning
intervals in S, where τv = min {degHA (v)− 1, degHA (v)− 1}. While constructing
(H ′′, µ′, w′′), each of the λv repeat spanning intervals was deleted, and the multiplicity
µ′ (v) was decremented to µ (v)− λv. The degree of v decreases to degHA (v)− λv ≤
µ (v) + 1 − λv, since we delete all adjacencies to non-repeats that are in the same
repeat spanning interval as v, and no such adjacency can be compatible with 2 repeat
spanning intervals in S.

3. Assume that an unoriented repeat v ∈ VR is contained in λv ≤ µ (v) repeat spanning
intervals. As in the oriented case, the multiplicity µ′ (v) is reduced to µ (v)−λv. Since
no non-repeat adjacent to v occurs in 2 repeat spanning interval in S, the degree of v
in H ′′ is decreased to at most degHA (v)− 2λv ≤ 2µ (v)− 2λv, where the extra factor
of 2 accounts for the fact that v is unoriented.

The degree of every non-repeat v ∈ V is at most 2 in H ′′. The degree of every oriented
repeat in H ′′, excluding its mate, is at most its multiplicity, while that of an unoriented
repeat is at most twice its multiplicity. This means that in a b–matching, with the function
b being defined by µ′, every edge is used at least once, and thus, the instance (H ′′, µ′, w′′)
is realizable in the mixed genome model.

Now consider a realization M ′ of the instance. In this realization, we have consecutive
substrings of size 2 corresponding to a set of edges {u, v}e, labelled by a repeat spanning
interval e ∈ S. Replace the occurrence u.v corresponding to such an edge with the string
o (e). Let the modified realization be calledM . Since o (e) occurs as a consecutive substring
in M for every e, each repeat spanning interval in S is compatible with M .

65

v0

v1

v2

r

1

(a) Unoriented repeat

v0 v1

v2

r r

1

(b) Oriented repeat

Figure 5.2: The constructions made during the algorithm for Theorem 5.1. In each case,
for both oriented and unoriented repeats in the repeat spanning interval, the interval is
replaced by an edge between its framing vertices, and any edges compatible with it are
deleted. The multiplicity of the repeat/repeats in the interval is decreased by 1. Note that
the framing vertices, which are non-repeats, are always oriented.

No non-repeats are introduced in M during the construction, and they all appeared
exactly once in M ′, so their multiplicity is not violated. For a repeat v ∈ VR, M ′ originally
contained µ′ (v) occurrences of v. In M , we have added λv occurrences of v, so we get a
total of µ′ (v) + λv occurrences. For both oriented and unoriented repeats, this value is at
most µ (v), which means that M is consistent with (V, µ).

Furthermore, all edges in EA are compatible with M . An edge e ∈ EA was deleted
during the construction of H ′′ only if there was a repeat spanning interval e′ ∈ S with
which it was compatible. Since each such interval is compatible with M , the deleted edges
must also be compatible with M . The rest of the edges were already compatible with M ′.
This means that M is a realization of (H ′, µ, w′), which completes the proof.

5.2.3 The algorithm

We can now describe the algorithm we use. The input is the instance (H,µ,w), with
H = (V,EA ∪ EI), such that the underlying adjacency instance is realizable in the mixed
genome model, and which has been suitably preprocessed using Lemma 5.1. The goal is
to find a set S ⊆ EI of repeat spanning intervals of maximum weight which satisfies the
conditions of Lemma 5.2.

66

1. Define an instance (G′, µ′, w′′), = (V,E′), which only has adjacencies. Ini-
tialize E = EA, µ′ = µ. Also initialize D = {∅}.

2. For every repeat spanning interval e ∈ EI spanning over an oriented repeat,
carry out the following operations.

(a) If o (e) = u.r.r.v, where u, v are non-repeats framing the repeat span-
ning interval, add the adjacency {u, v} to E′, and associate it to the
repeat spanning interval e.

(b) Decrement µ′ (r) and µ′ (r) by 1.

(c) Assign w′′ ({u, v}) = w (e).

(d) Add the edges {u, r} and {r, v} to D.

3. For every repeat spanning intervals e ∈ EI spanning over an unoriented
repeat, perform the following operations.

(a) If o (e) = u.r.v, where u, v are non-repeats framing the repeat spanning
interval, add the adjacency {u, v} to E′, and associate it to the repeat
spanning interval e.

(b) Decrement µ′ (r) by 1.

(c) Assign w′′ ({u, v}) = w (e).

(d) Add the edges {u, r} and {r, v} to D.

4. Delete the edges in D from E′, and set all unassigned weights to 1 +∑
e∈EI w (e).

5. Using Theorem 3.7, optimize the instance (G′, µ′, w′′) to obtain an instance
(G,µ′, wQ), where G = (V,Q) which is realizable in the mixed genome model,
where wQ is the restriction of w′′ to the edge set Q.

6. Output all repeat spanning intervals labelling edges in Q as the desired set
S.

Figure 5.2 shows the constructions made in the course of the algorithm for both the
oriented and unoriented repeat cases. The detailed pseudocode is included in Appendix A
for reference.

67

5.2.4 Analysis

Algorithm correctness

To check that the output of the algorithm, which is a set S of repeat spanning intervals,
is indeed the set of repeat spanning intervals that we desire, we note that the output set
satisfies all the conditions of Lemma 5.2. Every non-repeat is contained in at most 1 repeat
spanning interval in the set S. Otherwise, since each interval in S corresponds to an edge
in the set Q, there would have been a non-repeat adjacent to 2 edges in Q. But since the
non-repeats framing repeat spanning intervals are oriented, this contradicts the fact that
(G,µ′, wQ) is realizable in the mixed genome model.

This restriction on the non-repeats also means that an oriented repeat v ∈ VR appears in
at most τv = min {degHA (v)− 1, degHA (v)− 1} repeat spanning intervals in S. Otherwise,
the non-repeat neighbours of v or v would be contained in more than 1 repeat spanning
interval in S. Similarly, we can infer that an unoriented repeat v ∈ VR cannot appear in more
than µ (v) intervals in S This proves that the set S is indeed compatible with a realization of
(HA, µ, wA), and so, using Lemma 5.2, we conclude that the instance (H ′, µ, w′) is realizable
in the mixed genome model.

The set S is also the maximum weight set of repeat spanning intervals having the desired
property. Note that the maximum matching routine does not delete any edges in e ∈ EA\D,
since they had weight 1+

∑
e∈EI w (e). It would have been suboptimal to discard any of them

when weighed against discarding the set of edges that were added during the construction of
G′. The algorithm only deletes edges that were added in place of repeat spanning intervals.
Since the maximum matching routine makes sure that Q is the maximum weight set of edges
that can be chosen, and each of these edges corresponds to a repeat spanning interval, the
set S which satisfies the conditions of Lemma 5.2.

Algorithm complexity

The instance (G′, µ′, w′′) can be constructed from the original instance in time linear in |EI |,
i.e. the number of repeat spanning intervals. At the end, too, we can recover the set S from
the setQ of retained labelled adjacencies in linear time. The computational bottleneck of the
algorithm is in the maximum matching algorithm. There are 2 steps in this algorithm. The
first consists of constructing an auxiliary graph for b–matching, as described by Dessmark
et al. [58], and Maňuch et al. [138]. The number of vertices in G′ is n, and the number
of edges is O (m), where n and m are the number of vertices and hyperedges (adjacencies
and intervals) in the input instance. Let µ̄ be the maximum multiplicity of a vertex. In
the construction of the auxiliary graph, we introduce at most 2µ̄n + 2m vertices, and at
most (2µ̄+ 1)m edges. In general, µ̄ << n,m, and the multiplicity is usually taken to be a
constant and hidden in the asymptotic notation. The maximum matching algorithm runs
in time O

(
|E|
√
|V |
)
for a graph with |V | vertices and |E| edges [146]. So, the runtime for

68

the maximum matching routine in this instance is O (m
√
µ̄n+m).

The space complexity for the algorithm is linear in the size of the input instance. In
this case, this amounts to O (µ̄n+m), so it remains linear in the size of the input instance,
assuming µ̄ << n,m.

5.2.5 The role of oriented vertices

Theorem 5.1 crucially relied on the fact that the frontier vertices of a repeat cluster were
all oriented. One may ask if Problem 5.1 is solvable in polynomial time if all the vertices
are oriented, and the problem is hard otherwise. The next chapter shows that this is not
true. The orientation of the vertices allows us to use restrict the number of repeat spanning
intervals through a repeat, but if the interval is not minimal, this is not a sufficient condition,
as there may be other types of conflicts.

The result in this chapter also fails when we have to consider unoriented framing vertices
in the repeat spanning intervals. It is useful to know if there is a condition on the repeat
spanning intervals under which we can optimize over them even if they are framed by
unoriented vertices.

69

Chapter 6

Optimization on repeat spanning
intervals is hard

We introduced Problem 5.1 in the previous chapter, and showed in Theorem 5.1 that at least
when the repeat spanning intervals involved are minimal, and when the frontier vertices are
oriented, the problem is tractable. This is indeed a useful first step, as we discussed, but
it definitely limits the scope of the problem. So one would wonder: can Theorem 5.1 be
generalized to non-minimal repeat spanning intervals? In this chapter we rule out this
possibility.

The reduction in this section was joint work with Cedric Chauve, Ján Maňuch and João
Zanetti. The dynamic programming algorithm presented at the end was joint work with
Cedric Chauve and João Zanetti.

6.1 Hardness of optimization

Theorem 6.1. Problem 5.1 is NP-hard for the mixed genome model even when the maxi-
mum multiplicity of a repeat is 2.

The proof given below assumes that all vertices in the instance are oriented, and so,
they can be paired into heads and tails. This automatically enforces the condition that the
frontier vertices to a repeat cluster are also oriented. For the purposes of the construction,
we shall use the term oriented pair to refer to two such vertices, and this relation is denoted
by (v, v) (the order is unimportant). To add an oriented pair (v, v) to an instance (H,µ,w),
H = (V,E), implies that we are adding the vertices v, v to V , and the adjacency {v, v} to
E. Later, we give the corresponding gadgets when the vertices are not oriented, and the
proof for that case follows the same basic principle.

70

6.1.1 3SAT(2,2)

In order to prove Theorem 6.1, we will provide a reduction from the following problem,
which we call 3SAT(2,2). The details of the notation used here, and the hardness of this
problem itself is proved through a reduction from classical 3SAT. This reduction is provided
in Appendix B.

Lemma 6.1. Let Φ be a boolean formula in CNF form, such that there are exactly n

variables, m 3-clauses, and every variable has precisely 2 positive and 2 negative literals
each. Then, the problem of deciding if Φ has a satisfying assignment is NP-complete.

The choice of this problem is not arbitrary: the intractability result in Theorem 3.7 was
proved through a reduction from (2,3)SAT(1,2), a related problem in which the CNF formula
Φ has precisely 2 positive and 1 negative occurrence of each variable, and the negative
occurrence and exactly one of the positive occurrences happen in 2-clauses. Similarly,
the intractability result in Theorem 3.2 was also proved by reduction from another 3SAT
variant. Let us assume that the instance of 3SAT(2,2) given is called Φ = (X , C), where
X =

{
x0, . . . , x|X |−1

}
is a set of boolean variables, each having 2 positive and 2 negative

occurrences in Φ, and C =
{
c0, . . . , c|C|−1

}
is a set of 3-clauses. Clearly, 4|X | = 3|C| by the

constraints on the clause size and the number of variable occurrences.

6.1.2 Constructing the underlying adjacency instance

To define the reduction, we first need to define the underlying adjacency instance. Note
that this instance needs to be realizable in the mixed genome model. We follow this up by
defining a set of repeat spanning intervals, such that not all of them can be in an optimal
set S. We call this instance (H,µ,w), where H = (V,E), w maps all hyperedges in E to 1.
Initialize V = E = ∅ and then begin the construction.

Variable gadget

For each variable xi ∈ X , i ∈ [|X |], we shall introduce a vertex gadget, constructed as
follows.

1. Add an oriented pair
(
Xi, Xi

)
to the instance.

2. Add oriented pairs
(
Ui, U i

)
and

(
Wi,W i

)
to the instance. Add edges {Ui, Xi} and

{Wi, Xi} to E.

3. Add oriented pairs
(
Pi, P i

)
and

(
Qi, Qi

)
to the instance. Add edges

{
Pi, Xi

}
and{

Qi, Xi

}
to E.

4. Add oriented pairs
(
P 0
i , P

0
i

)
and

(
P 1
i , P

1
i

)
, and edges

{
P 0
i , P i

}
and

{
P 1
i , P i

}
to E.

71

Ui

Wi

U i

W i

Xi

Pi

Qi

Q0
i

Q1
i

P 0
i P 1

i

Xi

P i

Qi

Q
0

i

Q
1

i

P
0

i P
1

i

To clause gadgets

To clause gadgets

1

Figure 6.1: Variable gadget used in the reduction, for a variable xi. Square vertices are
non-repeats, while circular vertices are repeats.

5. Similarly, add oriented pairs
(
Q0
i , Q

0
i

)
and

(
Q1
i , Q

1
i

)
, and edges

{
Q0
i , Qi

}
and

{
Q1
i , Qi

}
to E.

The gadget for xi ∈ X is shown in Figure 6.1.

Clause gadget

Consider a clause cp = (lp,0 ∨ lp,1 ∨ lp,2) in C, where all the lp,i are are literals, possibly with
lp,i = lp,j for i 6= j. The next part of the instance construction consists of including the
clause restrictions in Φ into the instance. This construction will take place in 3 stages. The
first stage consists of making constructions for each literal lp,i in the clause.

1. Add an oriented pair
(
Lp,i, Lp,i

)
to the instance.

2. Add oriented pairs
(
Li+1
p,i , L

i+1
p,i

)
and

(
Li−1
p,i , L

i−1
p,i

)
, where the additions in the indices

is done modulo 3. Add the edge
{
L
i+1
p,i , L

i−1
p,i

}
to E.

3. Add edges
{
Li+1
p,i , Lp,i

}
and

{
Li−1
p,i , Lp,i

}
to E.

72

Y i+1
p,i

Y i−1
p,i

Y
i+1

p,i

Y
i−1

p,i

Lp,i

Li+1
p,i

Li−1
p,i

Cp,i

Fp,i

Tp,i

Lp,i

L
i+1

p,i

L
i−1

p,i

Cp,i

F p,i

T p,i

To variable gadget To C
i+1

p,i
To Ci

p,i−1

To V p,i

1

Figure 6.2: Part of the clause gadget constructed for a single literal lp,i of the clause cp =
(lp,0 ∨ lp,1 ∨ lp,2).

4. Add an oriented pair
(
Y i+1
p,i , Y

i+1
p,i

)
, and an edge

{
Y
i+1
p,i , L

i+1
p,i

}
, additions being done

modulo 3.

5. Similarly, add an oriented pair
(
Y i−1
p,i , Y

i−1
p,i

)
, and an edge

{
Y
i−1
p,i , L

i−1
p,i

}
.

6. Add an oriented pair
(
Cp,i, Cp,i

)
, and add an edge

{
Lp,i, Cp,i

}
to E.

7. Add oriented pairs
(
Tp,i, T p,i

)
and

(
Fp,i, F p,i

)
. Add edges

{
T p,i, Cp,i

}
and

{
F p,i, Cp,i

}
to E.

The construction of this part is given in Figure 6.2. Once this construction is completed for
all three literals in cp, we construct two cycles as follows. The first cycle will be involved in
setting literals to 0, and we call it the false cycle.

1. Add oriented pairs
(
Ci+1
p,i , C

i+1
p,i

)
for all i ∈ [3].

2. Add edges
{
Cip,i−1, Fp,i

}
, additions being done modulo 3.

3. Add edges
{
C
i+1
p,i , Fp,i

}
.

73

lp,0

Vp,0

Vp,2

Vp,1

V p,0

V p,2

V p,1

T ′
p,2

T ′
p,0

T ′
p,1

T
′
p,2

T
′
p,0

T
′
p,1

Tp,0

Tp,1

Tp,2 To lp,2

To lp,1

C1
p,0

Fp,0 C0
p,2

Fp,2Fp,1

C2
p,1

C
1

p,0

C
0

p,2

C
2

p,1 To lp,2To lp,1

1

Figure 6.3: Cycles in a clause gadget connecting the components corresponding to different
literals. Here, lp,0, lp,1 and lp,2 are the constructions made in Figure 6.2 for every literal in
the clause. The vertices Fp,i and Tp,i are identified with the corresponding vertices of the
same name in Figure 6.2 for every literal lp,i.

The second cycle, conversely, is involved in setting literals to 1, and so we call it the
true cycle.

1. Add oriented pairs
(
Vp,i, V p,i

)
for all i ∈ [3].

2. Add edges
{
Vp,i, V p,i+1

}
to E for each i.

3. Add edges
{
Tp,i, V p,i

}
to E for each i.

4. Add oriented pairs
(
T ′p,i, T

′
p,i

)
for i ∈ [3].

5. Add edges
{
T ′p,i, Vp,i

}
for all i.

The construction of the clause gadget, in total, is given in Figure 6.3.
Finally, the construction is completed by linking the variable gadgets to the clause

gadgets. Consider a clause cp = (lp,0 ∨ lp,1 ∨ lp,2). Assume lp,0 = xδi , where δ ∈ {0, 1},
depending on whether it is a positive (δ = 1) or a negative literal (δ = 0). If, during
the construction, the vertex P δi has degree 1, add an edge

{
P
δ
i , Lp,i

}
. Otherwise, add an

edge
{
Q
δ
i , Lp,i

}
. Since each xi has exactly 2 occurrences as a positive literal x1

i , and two

occurrences as a negative literal x0
i , at least one of P δi and Qδi must have degree 1 before

adding this edge.

74

The variable gadget for a single variable xi ∈ X consists of 18 vertices and 17 edges. The
clause gadget, when put together with all three literals and the involved cycles, consists of
60 vertices and 75 edges, including those which connect it to the variable gadgets. So, the
total size of the vertex set of the instance (H,µ,w) is n = 18|X |+60|C|, and the cardinality
of the set of adjacencies EA ⊆ E is m = 17|X | + 75|C|. Clearly, this is polynomial in the
size of the instance Φ.

Multiplicities and weights

The multiplicity function µ is defined for the instance as follows.

1. In the variable gadgets, µ (Ui) = µ (Wi) = 1 for all i ∈ [|X |]. By the definition of
oriented vertices, we also get µ

(
U i
)

= µ
(
W i

)
= 1.

2. In the clause gadget, µ
(
T ′p,i

)
= µ

(
Y i+1
p,i

)
= µ

(
Y i−1
p,i

)
= 1. As in the previous case,

the respective mates in the oriented pairs involving these vertices also have multiplicity
1.

3. For all other vertices, µ evaluates to 2.

Note that there are no vertices of higher multiplicity than 2. For the weights, we define wA,
the restriction of w to EA, to be 1 for all e ∈ EA. We now have to verify that adjacency
instance satisfies the hypothesis under which we operate.

Claim. The instance (HA, µ, wA) is realizable in the mixed genome model.

To note this, consider the following construction. For every oriented pair (v, v) in the
adjacency instance (HA, µ, wA), HA = (V,EA), collapse the edge {v, v} to get a single
vertex adjacent to all vertices that each of v and v were adjacent to. Add an unoriented
vertex V0 of unbounded multiplicity, and add edges (with multiple edges allowed) from V0

to every vertex v ∈ V which has degree less than 2µ (v), till this limit is reached. Once
this construction is complete, we get an instance in which each vertex has even degree. So,
we can find an Eulerian tour in this graph. For every 3 vertex walk u′.v′.w′ in this tour, if
v′ is the collapsed oriented pair (v, v) such that v was adjacent to a vertex in the oriented
pair corresponding to u′, and v was adjacent to a vertex in the oriented pair corresponding
to w′, expand this walk into u′.v.v.w′. Doing so, we get a tour on the graph HA ∪ {V0}.
Deleting the vertex V0, we now get a set of walks in which each vertex v ∈ V appears at
most µ (v) times, and every edge in EA is traversed at least once. This set of walks is the
desired realization, and proves the claim.

Having verified this, we now proceed to define the repeat spanning intervals, which form
the crux of the construction.

75

6.1.3 Constructing the set of repeat spanning intervals

There are 2 types of repeat spanning intervals that we will be adding to the instance. The
first type, which we call literal intervals, are intervals that will be chosen when a literal is
set to true. These intervals run from a variable gadget to a clause gadget. The second type
of repeat spanning intervals are called clause intervals, and they run within a single clause
gadget. They act to block us from setting a literal to true within a clause.

To specify a repeat spanning interval e ∈ E, we shall specify the order o (e) ∈ V ∗ of
the interval instead. In the proof, we make no distinction between the order of a repeat
spanning interval and the interval itself. Since the order may be very long, we will use the
following notation to condense their representation. For a clause cp = (lp,0 ∨ lp,1 ∨ lp,2), we
define αp,i for i ∈ [3] as the sequence of vertices defined by the following unique walk in
HA = (V,EA).

αp,i =Lp,i.Lp,i.Li+1
p,i .L

i+1
p,i .L

i−1
p,i .L

i−1
p,i . Lp,i.Lp,i.Cp,i.Cp,i.−

− T p,i.Tp,i.V p,i.Vp,i.V p,i+1.Vp,i+1. V p,i−1.Vp,i−1.V p,i.Vp,iT
′
p,i,

where the line break indicates a continuation of the walk.

Literal intervals

Consider a variable xk ∈ X , and assume that P 0
k, P

1
k, Q

0
k andQ

1
k are adjacent to Lp0,i0 , Lp1,i1 ,

Lp2,i2 and Lp3,i3 respectively. Define the set of literal intervals as the following set for all
k ∈ [|X |].

Wk. Xk. Xk. Pk. P k. P
0
k . P

0
k. αp0,i0 ,

Uk. Xk. Xk. Pk. P k. P
1
k . P

1
k. αp1,i1 ,

Uk. Xk. Xk. Qk. Qk. Q
0
k. Q

0
k. αp2,i2 ,

Wk. Xk. Xk. Qk. Qk. Q
1
k. Q

1
k. αp3,i3 .

Note that no two intervals defined above pass through the same vertex Tp,ij . So, we will
use the notation Tp,ij -interval to specify the repeat spanning interval passing through that
vertex.

Clause intervals

The clause intervals for a clause cp = (lp,0 ∨ lp,1 ∨ lp,2) are defined for every pair of literals
{lp,i, lp,j}, i 6= j, in the clause, as follows.

76

Y
i+1
p,i .L

i+1
p,i .L

i+1
p,i .Lp,i.Lp,i. Cp,i.Cp,i.F p,i.Fp,i.C

i+1
p,i .C

i+1
p,i .−

− .Fp,i+1.F p,i+1.Cp,i+1.Cp,i+1.Lp,i+1.Lp,i+1.L
i
p,i+1.L

i
p,i+1.Y

i
p,i+1,

where index addition is done modulo 3. We denote these repeat spanning intervals by the
shorthand

[
Y i+1
p,i , Y

i
p,i+1

]
for all p ∈ [|C|] , i ∈ [3].

In all, note that the set EI constructed consists of 4 literal repeat spanning intervals per
variable, and 3 repeat spanning clause intervals per clause (by pairing up the 3 literals in
it). So, the size of the set EI is 4|X |+3|C| = 6|C|. Once the set of repeat spanning intervals
EI is defined, we extend the weight function w so that w (e) = 1 for all e ∈ EI , i.e. all the
repeat spanning intervals have the same weight.

6.1.4 The proof

We wish to prove the following claim.

Claim (Main claim). Φ has a satisfying assignment if and only if there is a subset S ⊆ EI
of size at least 2|C|, such that (H ′, µ, w′), where H ′ = (V,EA ∪ S) is realizable in the mixed
genome model.

We prove the claim by demonstrating that, given a satisfying assignment for Φ, we can
construct a set S ⊆ EI of repeat spanning intervals having the given properties, and the
converse. We prove the forward direction first.

“⇒” If Φ has a satisfying assignment, there exists a set S ⊆ EI of size at least 2|C| such
that (H ′, µ, w′), H ′ = (V,EA ∪ S) is realizable in the mixed genome model.

Using the given satisfying assignment, we are going to construct the set S, and show
that the instance (H ′, µ, w′) is realizable in the mixed genome model.

Assume that the satisfying assignment for Φ sets the literal lp,0 of a literal cp =
(lp,0 ∨ lp,1 ∨ lp,2) to 1. This can be assumed without loss of generality, since we can re-
label the literals within a clause. Construct the set S as follows. Initialize S = ∅.

1. For each clause cp ∈ C, add the Tp,0-interval to S.

2. For each clause cp ∈ C, add the
[
Y 2
p,1, Y

1
p,2

]
-interval to S.

The size of the set S after this construction is exactly 2|C|, since we add precisely 2 repeat
spanning intervals to it per clause. So, the required cardinality of the set, at least, is
satisfied.

To show that the instance (H ′, µ, w′) is realizable in the mixed genome model, we are
going to use Lemma 4.1. Recall that this lemma states that an instance with repeat spanning
intervals is realizable in a genome model if and only if an equivalent instance, in which

77

repeat spanning intervals have been replaced by paths simulating the vertex order associated
with the intervals, is realizable in the same model, without any vertices in this instance
having negative multiplicity. We will construct this equivalent instance, and show that it is
realizable in the mixed genome model.

Call the new instance (G,µ′, w′′), where G = (V ′, E′). Initialize G = (V ′, E′) to be the
underlying adjacency graph HA = (V,EA), and set µ′ = µ on this set of vertices. Let S′ be
the set of repeat spanning intervals that have been iterated over. For every repeat spanning
interval e ∈ S, with order o (e) = u.r0.rk−1.v, where it is possible that ri = rj for i 6= j,
perform the following operations.

1. Add e to S′.

2. For every ri in the order, i ∈ [k], add a vertex re,i to V ′, and set µ′ (re,i) = 1.

3. Decrement µ′ (ri) by 1 for all i ∈ [k].

4. Delete edges {u, r0} and {rk−1, v}.

5. Add edges {re,i, re,i+1} for all i ∈ [k − 1] to E′.

6. Add edges {u, re,0} and {re,k−1, v} to E′.

7. If the degree of an oriented repeat ri exceeds µ′ (ri) + 1, delete all adjacencies to it
which are compatible with a repeat spanning interval in S′, except for the adjacency
with its mate ri.

For the weight function w′′, set w′′ (e) = 1 for all e ∈ E′. The instance (G,µ′, w′′) only
consists of adjacencies, since the only intervals in the original instance were the repeat
spanning intervals, and we replaced them by paths in the above construction. For this
instance to be realizable in the mixed genome model, by Theorem 3.2, every vertex v ∈ V
must have degree at most µ′ (v) + 1.

First note that all non-repeats u ∈ V ′ in the graph G will have degree at most µ′ (v)+1.
Every non-repeat u was contained in at most 1 repeat spanning interval in S, by the
construction of the set S. Otherwise, there would have been conflicting assignments of a
variable in the satisfying assignment of Φ. To see this, note that each positive literal of a
variable xi is associated to a repeat spanning interval containing exactly one of the vertices
Ui and Wi, and so is each negative literal. Thus, the only way that Ui occurs in 2 repeat
spanning interval is if both x1

i and x0
i are set to 1, which is not possible. For the vertices

Y
j
p,i, only 1 repeat spanning interval containing them is chosen, if any (assuming i, j 6= 0).

On replacing these intervals with a path, we deleted and added an edge to a non-repeat
u. Since the degree of u in HA was at most 2, its degree now is still the same. Also, the
multiplicity µ′ (v) does not change for non-repeats, so it is always positive, and the stated
bound on the degree is satisfied.

78

For the repeats, if a repeat occurs once in a repeat spanning interval in S, its multiplicity
is reduced by 1 and, if it has degree 3, an edge compatible with the interval it is contained
in is deleted. So, its degree becomes 2. If it occurs twice, then 2 edges are removed. In
either case, the degree is at most 2. To verify that this degree is bounded, we will show
that the multiplicity of the vertices are accordingly decremented.

In every variable gadget, there can be at most 2 literal intervals chosen. This comes
from the fact that either the corresponding variable is set to 0 or 1, and there are two
literals of each type, of which 0, 1 or both of them can be leading literals in a clause (i.e. in
a clause cp = (lp,0 ∨ lp,1 ∨ lp,2), they occur as lp,0). By the construction, if a variable xi is
set to δ ∈ {0, 1}, the repeat spanning intervals chosen (if any) will contain P δi and Qδi , and
these intervals only share the vertices Xi and Xi. If no intervals are chosen, the multiplicity
of Xi and Xi remains 2, and the degree remains 3. If exactly 1 interval is chosen, the
multiplicity of Xi and Xi is decremented by 1, and one of the 2 edges, {Ui, Xi} or {Wi, Xi}
is deleted. Also, one of the edges

{
Xi, Pi

}
or
{
Xi, Qi

}
is deleted, depending on which one

is compatible with the chosen interval. So, the degree of Xi and Xi becomes 2, including
the edge

{
Xi, Xi

}
. If both repeat spanning intervals are chosen, then all 4 edges stated

before are deleted, and the multiplicity of both Xi and Xi is decremented twice to 0. So,
their degree is still at most µ′ (Xi) + 1.

For the rest of the vertices in the variable gadget, the only ones we need to worry about
are P i and Qi, which have degree 3. But each of these vertices can only be contained in
at most 1 repeat spanning interval in S, and on deleting the edge adjacent to them which
is compatible with the chosen repeat spanning intervals, their degree becomes 2, while the
multiplicity is decremented to 1, which is still under the bound required. The rest of the
vertices all have degree 2 and are contained in at most 1 repeat spanning interval.

In the clause gadget, first note that the two chosen repeat spanning intervals, which
are walks within the graph, are vertex disjoint. No vertex is used more than 2 times in
the literal interval chosen, and for a clause cp in which the Tp,0-interval is chosen, the only
vertices that occur more than once in the order are Lp,i and Lp,i. Since their multiplicity is
decremented to 0, on deleting all edges compatible with chosen repeat spanning intervals,
their degree becomes 1, which is the edge between Lp,i and Lp,i. So, the bound is met.
Following this same procedure, we can verify that on deleting compatible edges, which is
all the edges that define the walk associated to the order of the repeat spanning interval,
the degrees of the remaining vertices is bounded by 1 exceeding the multiplicity.

For the chosen clause interval, say the
[
Y 2
p,1, Y

1
p,2

]
-interval, no vertex occurs twice in

the associated order. On decrementing the multiplicity of the vertices by 1, and deleting
compatible edges, the remaining edges adjacent to a vertex v in the interval are again at
most 1 + µ′ (v). So, the bound is verified for all vertices.

Finally, since none of the vertices is assigned a negative multiplicity in this process,
using Theorem 3.2, we can conclude that the instance (G,µ′, w′′) is realizable in the mixed

79

genome model. Using Lemma 4.1, we can conclude that (H ′, µ, w′), H ′ = (V,EA ∪ S), is
realizable in the mixed genome model as well.

The proof for the reverse direction seeks to establish that any compatible set of repeat
spanning intervals S such that (H ′, µ, w′) is realizable in the mixed genome model must
have the structure of the set that we constructed in the forward direction.

“⇐” If there exists a set S ⊆ EI of size at least 2|C| such that (H ′, µ, w′), H ′ = (V,EA ∪ S)
is realizable in the mixed genome model, then there exists a satisfying assignment for Φ.

For the purposes of the proof, assume that (G,µ′, w′′), G = (V ′, E′), is the instance
constructed by replacing repeat spanning intervals by paths, as in the previous case. By
Lemma 4.1, this instance must also be realizable in the mixed genome model, since (H ′, µ, w′)
is realizable in it.

We claim that the set S, which we will restrict to have size exactly 2|C|, must contain
exactly 1 literal interval per clause gadget. We prove this argument below.

1. If one chooses 2 clause intervals per clause gadget, say the
[
Y 2
p,1, Y

1
p,2

]
-interval and

the
[
Y 0
p,2, Y

2
p,0

]
-interval for a clause cp, the vertex Lp,2 occurs 2 times in total over

the orders associated to these intervals. So, during the construction of the graph
(G,µ′, w′′) using the set S as a template, the multiplicity of Lp,2 will be set to 0. But
Lp,2 is also adjacent to a vertex from a variable gadget, say P δi (which means that the
third literal in the clause is xδi). This edge cannot be compatible with any realization
of the instance, since Lp,2 cannot occur a third time to satisfy the demand imposed
by the compatibility constraint. So, at most 1 clause interval can be chosen per clause
gadget.

2. If a clause gadget contains 2 literal intervals, say the Tp,0-interval and the Tp,1-interval
for a clause cp, then each of these repeat spanning intervals uses the vertices Vp,2 and
V p,2 once each, setting their multiplicity to 0. Since Vp,2 is adjacent to T ′p,2, and
µ′ (Vp,i) = 0 by construction, this contradicts the realizability of (G,µ′, w′′), and by
extension, that of (H ′, µ, w′). So, at most 1 literal interval can be in S for each clause
gadget.

Since the set S consists of exactly 2|C| intervals, this means that there are exactly |C| literal
intervals, and the rest are all clause intervals.

Now we prove that there are at most 2 literal intervals per variable gadget, and that if one
contains P δi , the other must contain Qδi and vice-versa, where δ ∈ {0, 1}. Assume we choose
the literal intervals which contain P δi and Q1−δ

i . Then both these repeat spanning intervals
contain the non-repeat Wi. This means Wi occurs twice in a realization of (H ′, µ, w′), but
since µ (Wi) = 1, it contradicts the realizability of this instance. Similarly, if the literal
intervals chosen contain both P δi and P 1−δ

i , the vertex Xi is used once in each of the chosen

80

intervals, which means the edge
{
Qi, Xi

}
cannot be compatible with a genome map, which

again contradicts the realizability. So, these cases cannot occur, and proves that if one of
the chosen literal intervals contains P δi , the other interval, if chosen, must contain Qδi and
vice-versa, where δ ∈ {0, 1}.

Finally, we construct a satisfying assignment for Φ as follows. For each clause gadget,
consider the corresponding literal interval contained in S. If this interval contains either
P 0
i or Q0

i for some i ∈ [X], set the variable xi ∈ X to 0. Otherwise, if it contains P 1
i or

Q1
i , set the variable to 1. Since we cannot pick 2 literal intervals such that one contains P δi

and the other contains either P 1−δ
i or Q1−δ

i , δ ∈ {0, 1}, it is not possible to have conflicting
assignments to a variable. Since a literal being set to 1 is present in a clause, and every
clause has a literal set to 1, Φ is proved to be satisfiable. This completes the proof.

6.1.5 The gadgets for non-oriented vertices

It is necessary to note that Theorem 6.1 holds irrespective of whether the vertices in the
instance are oriented or unoriented. The reduction specified in the previous sections has
been described for an instance with only oriented vertices, but it can easily be adapted to
one with unoriented vertices. In fact, the gadgets in this case turn out to be much smaller,
as depicted in Figures 6.4a and 6.4b.

Following this construction, the details of the proof are essentially identical, and the
idea of assigning literals on the basis of the chosen literal intervals remains the same. The
main difference is that the clause gadget does not have any cycles induced by the vertices in
it. This is a consequence of the orientation of the vertices in the main proof. Furthermore,
no repeat spanning interval in the unoriented reduction has to use a vertex more than once
in this reduction, something that was not avoided in the oriented reduction. So, we have
the following question.

Question 6.1. Is Problem 5.1 tractable when every repeat spanning interval in the instance
(H,µ,w) is framed by oriented vertices, and no repeat vertex occurs more than once in a
repeat spanning interval?

6.2 Fixed parameter tractability

Following Theorem 6.1, the question that remains is if there is any way we can control the
complexity in the problem in order to obtain polynomial time algorithms. Theorem 5.1
was a restriction on the size of the repeat spanning intervals. We now show an algorithm
that runs in polynomial time for cases where the size of the repeat clusters, defined as the
product of the number of vertices in the cluster and the maximum multiplicity, is fixed.

81

Ui

Wi

U ′
i

W ′
i

Xi

Pi

Qi

Q0
i

Q1
i

P 0
i P 1

i

To clause gadgets

To clause gadgets

1

(a) Variable gadget for unoriented instances.

Cp

Tp

Lp,iLp,i+1

Lp,i−1

Y i+1
p,i

Y i−1
p,i

Y i
p,i+1

Y i−1
p,i+1 Y i

p,i−1Y i+1
p,i−1

Zi+1
p,i

Zi−1
p,i

Zi
p,i+1

Zi−1
p,i+1 Zi

p,i−1Zi+1
p,i−1

Tp,i Tp,i+1Tp,i−1

T ′p,i T ′p,i+1T ′p,i−1

To variable gadgetTo variable gadget

To variable gadget

1

(b) Clause gadget for unoriented instances.

Figure 6.4: Gadgets for reduction using unoriented instances. Note that every vertex has
degree at most 4. Since the underlying adjacency instance is realizable in the mixed genome
model, the maximum multiplicity of the vertices can be restricted to 2. The literal intervals
here run from the vertices Uj or Wj to Tp,i, where lp,i is a literal in the clause cp of the
boolean variable xj . The clause intervals run from Y j

p,i to Y i
p,j within a clause gadget, and

use every repeat on the unique path between these two vertices exactly once.

82

6.2.1 Using the knapsack structure

We stated in Section 5.1.2 that Problem 5.1 is closely related to the multidimensional
knapsack problem. This turns out to be useful, since there is a known dynamic programming
formulation for solving the knapsack, and by extension, the multidimensional knapsack
problem (a general survey is available in [86]). This is an exact exponential time algorithm
in which the exponential factor is restricted to the total capacity of the knapsack. The
result we get can be stated as follows.

Theorem 6.2. Problem 5.1 is fixed parameter tractable for the mixed genome model when
parameterized by the maximum size of a repeat cluster, ρ, and the maximum multiplicity,
µ̄.

The first thing to note is that we can always restrict the analysis to single repeat
clusters. Recall that repeat clusters are connected components in the induced instance on
the set of repeats. Assuming we have oriented frontier vertices, there is no repeat spanning
interval such that it contains vertices from 2 extended repeat clusters. Since repeat spanning
intervals are defined over individual repeat spanning intervals, such a vertex, if any, must
belong to the frontier, and an oriented frontier vertex can belong to at most 1 extended
repeat cluster. In the case of unoriented frontier vertices, we can consider an arbitrary
doubling of the undoubled frontier vertex. Each end of this doubling can belong to exactly
1 extended repeat cluster, since the vertex itself has multiplicity 1 and the underlying
adjacency instance is realizable in the mixed model.

We can now work on this modified instance without modifying any of the constraints.
Then, we define the knapsack restrictions on the set of repeat spanning intervals arise from
the extended repeat cluster it spans. These are restrictions defined by the multiplicity of the
vertices, which make sure that no vertex exceeds its multiplicity in a genome map which is
compatible with the chosen set of repeat spanning intervals. If the input instance contains
several repeat clusters, we can treat them all as independent problems by partitioning the
set EI into subsets that span each repeat cluster separately. Since a repeat belongs to
exactly 1 repeat cluster, the set of repeat spanning intervals can be partitioned as such.

6.2.2 Complications in the new problem

There is a significant difference between the knapsack problem and Problem 5.1. Prob-
lem 5.1 specifies that the output instance must contain all adjacencies that were specified
in the underlying adjacency instance given as input. If we add certain repeat spanning
intervals, it may be possible that we use up all copies of a vertex while adding them. Then,
adjacencies in the adjacency instance which were are not compatible with a repeat spanning
interval added to the optimal set may no longer be compatible with a mixed genome map.

This means that we need to add additional constraints to the knapsack in order to keep
track of which edges are compatible with the repeat spanning intervals in the set S that

83

we are constructing. Adjacencies between repeats within a repeat cluster will be given
binary capacities, which keeps track of whether they are compatible with a repeat spanning
interval in the set S or not. A solution is accepted if this capacity is filled for every edge
{u, v} in the instance. Based on these observations, we now define notation to describe the
algorithm.

Let the input instance (H,µ,w), where H = (V,EA ∪ EI) consist of a single repeat
cluster R, the frontier vertices F (R), adjacencies between F (R) and R, and repeat spanning
intervals over it. We denote the repeat spanning intervals in EI by

{
e′0, . . . , e

′
n−1

}
, and the

vertices in R are labelled {v0, . . . , vρ−1}. The set EF = {f0, . . . , fκ−1} is the set of edges to
frontier vertices F (R) of the repeat cluster.

Define a function µ∗ : EF → N, which maps the frontier edges to 1. Also define a set of
functions νt : EI → N for each t ∈ R ∪ EF as follows.

1. For vi ∈ R, νvi
(
e′j

)
= q if vi appears exactly q times in the sequence o

(
e′j

)
.

2. For fi ∈ EF , νfi
(
e′j

)
= 1 if fi is compatible with o

(
e′j

)
, and 0 otherwise.

In general, we use νvi (respectively νfi) to denote the vector
(
νvi (e′0) , . . . , νvi

(
e′n−1

))
(resp.

(
νfi (e′0) , . . . , νfi

(
e′n−1

))
).

We also generalize the notation νt to accommodate the binary constraints we need for
edges within a repeat cluster. Let ER =

{
e0, . . . , e|ER|−1

}
be the set of edges with both

ends in R. Set νei
(
e′j

)
to 1 if the repeat spanning interval e′j uses the edge ei, and set it to

0 otherwise. These values are treated as booleans rather than integers.
We will find it convenient to define functions η : EI → Zρ+κ

≥0 and θ : EI → {0, 1}|ER|.
For η, the first ρ indices run over the set of repeats R and the next κ indices run over the
frontier edges of R. For θ, the |ER| indices run over the edges between repeats in R. These
functions are defined as follows.

1. η (e′i) =
(
νv0 (e′i) , . . . , νvρ−1 (e′i) , νf0 (e′i) , . . . , νfκ−1 (e′i)

)
. All entries in this array are

integers.

2. θ (e′i) =
(
νe0 (e′i) , . . . , νe|ER|−1 (e′i)

)
. This array only has boolean entries.

Given sets A0, . . . , Aq−1, we use [A0, . . . , Aq−1] to denote the Cartesian product A0 ×
. . .× Aq−1 of these sets. We use j to denote a vector (j0, . . . , jl−1,). The dimension of the
vector space, l, will be specified in the context of the vector being referred to. We say x ≤ y
if, for all 0 ≤ i < l, we have xi ≤ yi. For two boolean arrays k and q of length l, we use
the notation k ∨ q to denote the bitwise-OR operation at every coordinate of the array,
i.e. (k ∨ q)i = ki ∨ qi for all 0 ≤ i < l.

The dynamic programming array, which will be recursively constructed, is denoted by
M [k] [µ (v0) , . . . , µ (vρ−1) , µ∗ (f0) , . . . , µ∗ (fκ−1)]

[
1|ER|

]
. The first index goes over the

set of n repeat spanning intervals, EI . The second set of indices goes over all possible

84

subsets of occurrences of repeats and frontier edges, a multidimensional array of size ρ+ κ.
The third set goes over edges in ER, with only boolean values, and is a multidimensional
array of size |ER|. The value M [i] [j] [q] is the maximum weight set of repeat spanning
intervals up to e′i such that the copies of a repeat vj (frontier edge fj) used is at most (j)vj
((j)fj), and the set of edges in ER that are compatible with a realization is given by the
boolean array q.

6.2.3 Setting up the recurrences

We now examine the various possibilities for augmenting the optimal set S of repeat span-
ning intervals. Consider the entry M [i] [j] [k] in the array. The restrictions we have at this
point are the following.

1. Only a subset of the first i repeat spanning intervals can be in the set S.

2. For every repeat vp, at most jvi copies are used at this point.

3. For every frontier edge fi, the entry jfi is at most 1.

4. For every adjacency es between repeats vp and vq, such that es = 0, at least one of
the following conditions is true:

(i) jvp 6= 0 and jvq 6= 0,

(ii) or es is compatible with the repeat spanning interval e′i, i.e. νes (e′i) = 1

(iii) or ks = 1, i.e. it was compatible with one of the first i − 1 repeat spanning
intervals which was already added to the optimal set.

The second and third conditions are enforced by checking if j ≥ η (e′i). If this condition is
violated, it means that adding the repeat spanning interval e′i to the optimal set S would
result in a repeat, or a frontier edge being used more often than the constraints associated
to it.

The last constraint is checked by iterating through all possibilities for the vector k,
which lies in {0, 1}|ER|. We will not add the repeat spanning interval e′i if none of the
conditions is satisfied.

For both the cases discussed above, the algorithm should not include e′i in the set S.
The recurrence can be stated as follows.

M [i] [j] [k] = M [i− 1] [j] [k] . (6.1)

Finally, if all conditions are satisfied, the algorithm makes the choice to either add e′i
to the set S or not on the basis of the scenario that maximizes the weight of the set S
constructed up to that point. The maximum weight scenario must be chosen out of the
following possibilities.

85

1. There is a subset of S′ of repeat spanning intervals
{
e′0, . . . , e

′
i−1
}
which does not

contain e′i, such that it satisfies both the constraints on j and k.

2. There is a subset S′ of repeat spanning intervals
{
e′0, . . . , e

′
i−1
}
, such that adding

the interval e′i satisfies the constraints on j and k.

The first is a single scenario, whose weight is given by M [i− 1] [j] [k]. For the second, in
order to make sure that adding e′i satisfies the constraint on j, look at M [i− 1] [j− η (e′i)].
To make sure that the constraints on the inclusion of the k is satisfied, consider the following
cases for every ej such that kj = 1.

1. ej is not compatible with any of the intervals already added, but it is compatible with
e′i, i.e. there exists q ∈ {0, 1}|ER| such that qj = 0, and (θ (e′i))j = 1.

2. ej is compatible with one of the intervals added before, and it is also compatible with
e′i, i.e. there exists q ∈ {0, 1}|ER| such that qj = 1, and (θ (e′i))j = 1.

3. The edge is compatible with one of the intervals added before, but it is not compatible
with e′i, i.e. there exists q ∈ {0, 1}|ER| such that qj = 1, and (θ (e′i))j = 0.

This means we have to take the maximum over allM [i− 1] [j] [q], where q ∈ {0, 1}|ER| such
that q ∨ θ

(
e′j

)
= k. Thus, the recurrence can be written as

M [i] [j][k]← max

M [i− 1] [j][k], max
q∈{0,1}|ER|,
q∨θ(e′i)=k

{
M [i− 1] [j− η

(
e′i
)
][q] + w (i)

}
 .(6.2)

The final value returned will be M [n] [µ (v0) , . . . , µ∗ (fρ−1)]
[
1|ER|

]
, which indicates the

following things.

1. The number of copies of every repeat vi ∈ R does not exceed µ (vi).

2. The frontier edges are used exactly once.

3. Every adjacency within the cluster is compatible with a realization.

Backtracking from this value gives the set of repeat spanning intervals added. Algorithm 1
gives the pseudocode for Theorem 6.2.

6.2.4 Analysis

Algorithm correctness

At each iteration of the index i, the algorithm checks if a certain repeat spanning interval
e′i ∈ EI can be added, based on the intervals that have already been included, and the

86

Algorithm 1 Dynamic programming scheme for Problem 5.1 on the mixed genome model.
Input Mixed genome realizable instance (HA, µ, wA), HA = (V,EA), repeat spanning in-

terval set EI , w : EI → R+.
Output Maximum weight subset S ⊆ EI such that (H ′, µ, w′), H ′ = (V,EA ∪ S) is realiz-

able in the mixed genome model.
for j ∈ [µ (v0) , . . . , µ (vρ−1) , µ∗ (f0) , . . . , µ∗ (fκ−1)] do

2: for k ∈ {0, 1}|ER| do
M [0] [j] [k]← 0 . Initialize DP array.

4: end for
end for

6: for i ∈ [n] do . Iterate over set of repeat spanning intervals
for j ∈ [µ (v0) , . . . , µ (vρ−1) , µ∗ (f0) , . . . , µ∗ (fκ−1)] do

8: if j ≥ η (e′i) then . Check if e′i can be added
for k ∈ {0, 1}|ER| do

10: keeping_edges_constraint← True
for each edge es = (vp, vq) , 0 ≤ s < |ER| do

12: if ks = 0 and νes (e′i) = 0 and(
(j− η (e′i))p = νrp (e′i)or (j− η (e′i))q = νrq (e′i)

)
then

. Edge not in e′i, and one of the ends is exhausted
M [i] [j] [k]←M [i− 1] [j] [k]

14: keeping_edges_constraint← False
break

16: else if ks = 0 and νes (e′i) = 1 then . Edge cannot be added
M [i] [j] [k]←M [i− 1] [j] [k]

18: keeping_edges_constraint← False
break

20: end if
end for

22: if keeping_edges_constraint = True then . Adding e′i possible

M [i] [j][k]← max

M [i− 1] [j][k], max
q∈{0,1}|ER|,
q∨θ(e′i)=k

{
M [i− 1] [j− η

(
e′i
)
][q] + w (i)

}

. Choose best scenario.
24: end if

end for
26: else

for k ∈ {0, 1}|ER| do
28: M [i] [j][k]←M [i− 1] [j][k] . Multiplicity constraints violated.

end for
30: end if

end for
32: end for

return M [n] [µ (v0) , . . . , µ∗ (fκ−1)]
[
1|ER|

]
87

remaining multiplicity of the vertices involved in the interval. This condition is checked in
line 8 of the algorithm. If this condition is violated, (6.1) can be applied to update the
array.

The only extra condition needed is to make sure that every edge in ER remains com-
patible in the final instance. This is done by branching within the algorithm. The vector k
keeps track of all possible combinations of edges that have been included via repeat spanning
intervals up to e′i.

Line 12 checks if adding e′i uses up all copies of one of the vertices adjacent to an edge
ej ∈ ER, such that kj = 0. If this is the case, then since ej must be compatible with a
realization, but is not compatible with o (e′i), we cannot add the repeat spanning interval,
and the recurrence is specified by (6.1).

If, on the other hand, ej is compatible with e′i, but kj = 0, this means that we are not
allowed to have a set of repeat spanning intervals at this stage such that ej is compatible
with the order associated to one of them. This implies that we still cannot add e′i to our
set. This case is checked in line 16

The third case, implemented in line 23, is when adding the repeat spanning interval
does not violate any constraints. This is the recurrence as specified in (6.2). The returned
value, as desired, is M [n] [µ (v0) , . . . , µ∗ (fρ−1)]

[
1|ER|

]
.

Algorithm complexity

First, note that since the underlying adjacency instance is realizable in the mixed genome
model, we get the inequality |ER|+|EF | ≤ µ̄ρ, where µ̄ = maxv∈R µ (v), and ρ is the number
of repeats in the cluster. We will use this inequality quite often in the runtime analysis.

The initialization of the array M iterates through all possible assignments of knapsack
capacities, and takes time O

(∏
vi∈R µ (vi)×

∏
fi∈EF µ

∗ (ei)× 2|ER|
)
. The main loop checks

if the ith interval can be added or not. Within this loop, we iterate over all possible indices
j × k for the array M [i]. This is bounded by µ̄ρ2µ̄ρ (since |EF | = |F (R) | if all frontier
vertices are oriented, and ER + EF ≤ µ̄ρ) possibilities. Within this loop is a second loop
which iterates over all possible boolean vectors in {0, 1}|ER|, which takes time O

(
2µ̄ρ
)
, since

ER ≤ µ̄ρ.
There is an inner loop over the edges in |ER| and checks if a given edge has been added

or not. This takes time O (|ER|), which is at most µ̄ρ again. If a given edge has not been
added, but adding the interval does not violate any constraints, then we are faced with
the choice of adding the interval or not. In this case, take the maximum weight scenario
between not choosing the repeat spanning interval, or adding it to one of the sets of repeat
spanning intervals such that, on adding the interval, we include exactly the edges specified
by the vector k. This is a choice over the 1’s in the vector k, which iterates over all
vectors in {0, 1}|ER|. So, for the inner loop, over the choices of k, we get a complexity

88

of O
(
2|ER||ER|

)
. This gives us a total complexity of O

(
22|ER|+µ̄ρµ̄ρ|ER|n

)
, and using

|ER| ≤ µ̄ρ, we get O
(
23µ̄ρµ̄ρ+1ρn

)
.

The algorithm also uses exponential space to store the array M , of the order of
O
(
n
∏
vi∈R µ (vi)×

∏
fi∈EF µ

∗ (ei)× 2|ER|
)
.

6.3 Can we do better?

It is known that certain classes of packing problems admit polynomial time approximations
to an arbitrarily small factor [45]. If such techniques can be adapted to Problem 5.1, this
would result in a considerable speedup which can give solutions close to the optimal. When
we consider the reasonably small number of repeat clusters one encounters in certain types
of genomic data, this may prove to be a practical asset.

The theory of fixed parameter tractability usually makes heavy use of randomization
to achieve better running times [53]. Considering that the parameters for the dynamic
programming algorithm are not as natural as, say, the number of repeat spanning intervals
to delete, randomization may be the key to achieving fixed parameter tractable algorithms
in other parameters.

89

Part III

Vertex Orderings in Hypergraphs

90

Chapter 7

Overview of vertex ordering
problems

This part of the document is a marked shift in the theme of research. Up to now, we have
viewed the problems we have had as either decision problems, or as optimization problems
in which we are required to find a maximum weight subset of the hyperedges that satisfies
some property. In this part, though, we will be considering optimization problems in which
we have to find a layout of the vertices of the input instance which optimizes some objective
function.

The next two chapters will always assume that the multiplicity function for the instance
is set identically to 1 for all vertices, i.e. unique markers, and we will be studying realizability
in the linear genome model. In other words, we shall be interested in the classical C1P
problem, and how it relates to vertex ordering problems in graphs. We shall also assume
that all the vertices are unoriented. Thus, the set of vertices V only consists of vertices
in V u. Please note that the terms hyperedge and edge are used synonymously in the next
two chapters, since we do not usually distinguish between adjacencies and intervals in the
instance.

7.1 Motivation

Let H = (V,E) be an instance in which all vertices are mapped by the multiplicity function
to 1, and the hyperedges are weighted by a function w : E → R+. Assume that we wish to
check for realizability in the linear genome model, i.e. we wish to see if a given set of unique
markers we have can be arranged into a linear genome such that the synteny information
encoded in the instance is respected.

If there exists a map M in the linear genome model such that every vertex appears
exactly once in M , and every edge in E is compatible with it, or in other words, if H has
the consecutive ones property (C1P), then H is realizable. But more often than not, this is

91

not the case on real data [43, 170]. Then, we have to come up with a notion of optimizing
the instance in order to get one which does have the C1P.

In Problem 3.2, we stated that the aim is to discard a set of hyperedges of minimum
weight such that the remaining instance is compatible with a map in the given genome
model. Performing such an operation on H would indeed output an instance which has the
C1P, and for which we can find a realization in the linear model. Let S ⊂ E be the set
hyperedges discarded, and let M be a realization of H ′ = (V,E \ S) in the linear genome
model. Some of the hyperedges in the set S may exhibit the following two types of errors.

1. Missing vertices: There may be hyperedges e ∈ S which are almost compatible with
M . By this, we mean that there may be a consecutive subsequence of vertices in M
such that all the vertices in e are represented, but there are a small number of vertices
that are not in e which also present in the subsequence. In evolutionary genomics,
such an error may arise from small-scale convergent rearrangements.

2. Chimeric hyperedges: There may be hyperedges in e ∈ S which can be partitioned into
2 or more ‘large’ sets of vertices, such that each such set of vertices is compatible with
M . Such a hyperedge e encodes false synteny information, but each of the compatible
partitions is actually correct information.

Chimeric hyperedges are indeed a problem, and should be discarded as such. But in the
first type of error, the hyperedges encode some synteny information, but they are being
discarded outright in any exact, approximate or heuristic algorithm used to solve Prob-
lem 3.2. Furthermore, there are usually very few such hyperedges [43, 170]. But it is hard
to distinguish them from the chimeric hyperedges in the data, and if we are optimizing the
set of hyperedges, possibly useful synteny information may be discarded.

In order to get around this problem, there is one easy solution: we choose to keep
all hyperedges rather than discarding any. The idea is to order markers (i.e. vertices) on a
genome map (i.e. a linear order) while not distorting adjacencies or intervals (i.e. hyperedges)
too much. Then, hyperedges that are not distorted a lot are either compatible with the
order, or inferred to have missing vertices. Hyperedges that are distorted a lot can be
putatively classified as chimeric. There are many ways to define what a good genome map
means in this sense. This is the topic of discussion in the rest of the chapter.

7.2 The gapped C1P problems

One natural notion of what a good genome map is comes from observing the C1P from the
point of view of the binary incidence matrix associated to the input instance. Recall that
the incidence matrix of a hypergraph H = (V,E), where |V | = n and |E| = m is the m× n
binary matrix M with rows indexed by hyperedges and the columns indexed by vertices,

92

1 1 0 0 0 0
1 0 1 0 0 1
0 1 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

Figure 7.1: An example of a gap in a binary matrix. There are 2 gaps in the second row
of the matrix, one having a length of 1, and one having length 2. There is no permutation
of the columns which decreases the number of gaps in this instance, though the size of the
gap can be reduced if we allow the creation of a gap in another row.

and mij = 1 if and only if the vertex corresponding to the index j occurs in the hyperedge
corresponding to the index i. Then, we can define the notion of a gap.

Definition 7.1. Given an m× n binary matrix M , a set of consecutive columns, indexed
from t to t+ `− 1, where t > 1 and ` ≥ 1 is said to form a gap of length ` in a row i of M
if mij = 0 for all j ∈ {t, . . . , t+ `− 1}, and mi,t−1 = mi,t+` = 1.

The total number of gaps in a row i of M , under a permutation π of the columns, is
given by γπ (M, i). The maximum length of a gap in a row i, under the permutation π of
the columns, is given by λπ (M, i).

A gap in a row translates into a split in the synteny information encoded by the genome
map: for the hyperedge corresponding to the row, the vertices in the hyperedge do not occur
consecutively in the map. The vertices in the gap, which are not in the hyperedge (since
their columns have 0 in the corresponding row), correspond to markers that are inferred to
not form a synteny with those in the hyperedge, and are obstacles to the compatibility of
the hyperedge. Figure 7.1 shows an example of a matrix in which there is a row with a gap.

There are two major problems regarding gaps. The first problem is to find a permutation
of the columns that minimizes the total number of gaps in a binary matrix.

Problem 7.1. Find a permutation π of the columns of a binary m×n matrix M such that
the following objective function is minimized.

∑
Rows i of M

γπ (M, i) .

The second problem forces a restriction on both the number of gaps within a single row,
and the length of these gaps.

Problem 7.2. Let k, δ ∈ N be constants, and let M be a binary matrix. Is there a

93

permutation π of the columns such that

max
Rows i of M

γπ (M, i) ≤ k, and max
Rows i of M

λπ (M, i) ≤ δ.

Problem 7.1 was shown to be NP-hard by Kou [122]. It is, however, equivalent to the
metric Travelling Salesman Problem, and thus, there is a polynomial time 3/2-approximation
algorithm for it using the Christofides algorithm (folklore). However, the problem only asks
for a bound on the number of gaps, rather than asking for a bound on the size of the gaps.
This means that a permutation of the columns that optimizes this objective function may
choose to create large gaps in hyperedges, rather than keep the size of the gaps small, which
would mean that many hyperedges would be inferred to be chimeric.

Problem 7.2 quantifies the size of the gaps as well, which means that creating chimeric
hyperedges are penalized. The problem is NP-complete if any of the parameters d, k, δ is
allowed to vary, for all constant values of the two remaining parameters [39, 97, 100, 137],
except for a single case. This forms the main open question regarding Problem 7.2.

Question 7.1. If k = 2 and δ = 1, can Problem 7.2 be solved in polynomial time?

Currently, there is no major evidence for either side of this argument. There is also
no known approximation result for this problem. The only known positive result for this
problem is when the maximum number of 1’s in a row of the matrix, denoted by d, is
bounded, and both parameters k and δ are kept constant [39,137]. This is a result based on
an extension of an algorithm for deciding if a graph has bandwidth b, where b is a constant,
by Saxe [186]. We provide the exact definition of the bandwidth of a graph and how it
connects to the problems we discuss in the next section.

The gapped C1P is an example of a vertex ordering problem on hypergraphs. A per-
mutation of the columns of the incidence matrix can be interpreted as a permutation of
the vertices themselves. Vertex ordering problems, which are usually defined on graphs,
are ubiquitous in genomics [97, 112, 215], and especially in ancestral and comparative ge-
nomics [39,170,211,218].

7.3 Vertex ordering problems in graphs

Consider a graph G = (V,E). Suppose we lay out the vertices of G on a line, i.e. define a
total order on V . This defines a permutation π : V → {1, . . . , n}. We can ask if there is a
permutation π which does not ‘stretch out’ the edges too much. There are various classical
notions of defining what ‘stretch out’ means, and the problem of finding a permutation that
minimizes a given objective function which calculates this notion is a well studied topic in
algorithm design and computational complexity.

94

7.3.1 Defining the problems

We are interested in one such measure of stretching an edge. In the graph G = (V,E),
assume w : E → R is a weight function on the edges. Then, given a permutation π on the
set of vertices, the stretch of an edge e = {u, v} is defined as the following quantity.

strπ (e) = |π (u)− π (v) |.

We define two objective functions on G using the stretch of an edge.

1. The minimum linear arrangement of G is the following quantity.

MLA (G) = min
π : V→{1,...,n}

∑
e∈E

w (e) · strπ (e) .

2. The bandwidth of G is the following quantity.

bw (G) = min
π : V→{1,...,n}

max
e∈E

w (e) · strπ (e) .

Both, the minimum linear arrangement and the bandwidth of a general graph, are known
to be NP-hard to compute [91, 171]. In fact, even computing the bandwidth of trees is
hard [149], as is computing it for graphs of degree at most 3 [90]. As such, the computation
of these objective values usually falls into the ambit of approximation algorithms, exact
exponential algorithms, or fixed parameter tractability.

These are not the only linear arrangement problems encountered in literature. Other
related problems include the minimum cutwidth problem and the minimum distortion prob-
lem (see [23] for a list of such problems). We do not discuss all vertex ordering problems
in the manuscript, since we wish to introduce the basic notion of vertex ordering problems
and get preliminary results on the same.

7.3.2 Known results

Many vertex ordering problems on graphs have existed for a long time in mathematical
literature, and thus, there is a rich theory behind them. Some of the problems have been
proved to be tractable for highly structured graph classes. For example, the minimum
linear arrangement problem is known to be solvable in polynomial time on trees, a result
of Goldberg and Klipker [96].

An approximation for the minimum linear arrangement problem was first obtained
by Even et al. [76], and improved using rounding from a linear relaxation by Rao and
Richa [178]. The latest results, obtained through semidefinite relaxations, and combining
techniques from the previous results, has been obtained by Charikar et al. [34], and Feige
and Lee [78].

95

Theorem 7.1. [34,78] Given a graph G = (V,E), |V | = n, with non-negative edge weights
w : E → R, there exists a polynomial time algorithm which can approximate MLA (G) to
within a factor of O

(√
logn log logn

)
of the optimum.

At a high level, this result can be interpreted as a fallout of the O
(√

logn
)
-factor

approximation algorithm for sparsest cut in graphs [6, 7]. The latter result allows ‘cheap
partitions’ of graphs, such that not too many edges cross the partition compared to the
number of edges within each partition. The key to the approximation algorithm for the
minimum linear arrangement problem is to recursively find such ‘cheap partitions’, and use
it to order the vertices. Since the number of edges crossing a partition are few, the expected
number of edges that are stretched too far is small. That being said, the rounding technique
and the analysis are non-trivial [35].

On the other hand, Devanur et al. [59] proved the following result limiting the power of
the semidefinite programming route to get better approximations.

Theorem 7.2. [59] The semidefinite relaxation of the minimum linear arrangement prob-
lem with the triangle inequality constraints has an integrality gap of at least Ω (log logn).

So, the results obtained by Charikar et al. [34] and Feige and Lee [78] are optimal for
semidefinite relaxations that include the triangle inequality. At the moment, there is no
known relaxation for the problem which has achieved a better result.

The case of the bandwidth problem is even harder. Blum et al. first obtained an ap-
proximation up to a factor of O

(√
n/b logn

)
of the bandwidth, where b is the optimal

bandwidth of the input instance [22]. Feige proved that, short of using a set of constraints
different from those for the minimum linear arrangement problem, it is not possible to ob-
tain an approximation for the bandwidth minimization problem which is better than O (nε),
for any ε > 0 [77]. He used the concept of volume respecting embeddings in order to get an
approximation ratio of O

(
(logn)3√logn log logn

)
for the problem.

There are also many heuristic approaches for these problems. Of particular interest are
heuristics based on the spectral properties of the graphs for both the graph bandwidth prob-
lem [104] and the minimum linear arrangement problem [111]. These are results that build
on the results of Cheeger [44], Alon and Milman [3], which establish that a ‘cheap partition’
of a graph can be obtained by computing the second smallest eigenvector corresponding to
the Laplacian of a graph, and that the cost of this partition is bounded by functions of the
second smallest eigenvalue.

Besides these, there are also exact exponential time algorithms for some of the prob-
lems [23], building on the dynamic programming algorithm for the Travelling Salesman
problem. Where fixed parameter tractability is concerned, these problems usually cannot
be parameterized by the value of the objective function or by the treewidth of the input
graph, since they cannot be expressed in monadic second order logic [50]. However, many

96

of the problems (save minimum linear arrangement) can be parameterized by the size of
the vertex cover of the input graph in order to get a polynomial time algorithm [80].

7.4 Generalizing to hypergraphs

The minimum linear arrangement and bandwidth can be generalized to hypergraphs as well.
But as in any generalization, we can take various interpretations of what the ‘stretch’ of a
hyperedge means. The notion of gaps discussed in Section 7.2 localized the stretch within
a hyperedge to the vertices contained in a gap.

Definitions for concepts such as bandwidth for hypergraphs are not unknown. For
example, consider the following definition of hypergraph bandwidth. The adjacency matrix
of a hypergraph H = (V,E) is defined to be the symmetric real matrix A with entry aij
being equal to the number of hyperedges in which the vertices corresponding to indices i
and j both occur for i 6= j, and diagonal entries set to 0.

Definition 7.2. [182] The bandwidth of a symmetric matrix A is said to be k if aij = 0
for all i, j satisfying |i− j| > k. The bandwidth of a hypergraph H = (V,E) is the smallest
possible bandwidth of its adjacency matrix.

Under this definition, there are also some results based on the eigenvalues of the ‘Lapla-
cian’ matrix of hypergraphs, defined in terms of the adjacency matrix [182]. The problem
with this definition is that the adjacency matrix of a hypergraph, as defined here, is not
unique to it, and so notions like the minimum linear arrangement are less easy to interpret.

The interpretations we introduce here consider the stretch of a hyperedge as a global
property of how the vertices contained in it are placed in the vertex order, and define stretch
not just in terms of intervening vertices, but of the total length of the hyperedge.

7.4.1 Cumulative stretch

Assume that the notion of stretch is just that: how far is an edge stretched in a linear
arrangement of the vertices. In other words, how many vertices does it span over? At this
level, the notion of stretch of a hyperedge is just the same. Formally, given a hypergraph
H = (V,E), and a permutation π : V → {1, . . . , n}, the stretch of a hyperedge e ∈ E is
defined as follows.

strπ (e) = max
u,v∈e

|π (u)− π (v) |.

It follows that when |e| = 2 for all e ∈ E, i.e. when H is a graph, the stretch coincides
with the classical notion of the stretch of an edge in a graph. It is equivalent to the notion
of hypergraph bandwidth as introduced by Rodríguez [182]. However, since it is defined

97

for an edge, we need not quantify over pairs of vertices, and do not have to resort to the
adjacency matrix.

We can define generalizations of the minimum linear arrangement and the bandwidth
problems to hypergraphs.

Definition 7.3. Let H = (V,E) be a hypergraph on n vertices, and let w : E → R+ be a
weight function on the edges. The minimum cumulative stretch of H is defined to be the
following quantity.

MCS (H) = min
π : V→{1,...,n}

∑
e∈E

w (e) · strπ (e) .

This problem was considered by Banerjee et al. [11], who called it the hypergraph opti-
mal linear arrangement (HOLA) problem, and proved that there is a O

(
d
√

logn log logn
)
-

approximation for it, where d is the largest size of a hyperedge. We avoid their terminology
for the sake of clarity, since we are defining two possible generalizations of this problem.

Definition 7.4. Let H = (V,E) be a hypergraph on n vertices, and let w : E → R+ be a
weight function on the edges. The minimum edge stretch of H is defined to be the following
quantity.

MES (H) = min
π : V→{1,...,n}

max
e∈E

w (e) · strπ (e) .

7.4.2 Spread

A less obvious way of generalizing the stretch is as a density measure. Suppose we care
not only about how far a hyperedge e ∈ E of a hypergraph H = (V,E) stretches, but also
on how evenly the vertices of the hyperedge are spaced through this stretch. This is the
motivation behind the spread of a hyperedge e ∈ E, which we define as follows, given a
permutation π of the vertices.

sprπ (e) =
∑
u,v∈e

|π (u)− π (v) |.

Again, note that when |e| = 2, the spread of e is the same as the stretch of an edge
in a classical graph. So, we get another possible generalization of the minimum linear
arrangement and the bandwidth problems to hypergraphs.

Definition 7.5. Let H = (V,E) be a hypergraph on n vertices, and let w : E → R+ be a
weight function on the edges. The minimum cumulative spread of H is defined to be the
following quantity.

MCSP (H) = min
π : V→{1,...,n}

∑
e∈E

w (e) · volπ (e) .

98

Definition 7.6. Let H = (V,E) be a hypergraph on n vertices, and let w : E → R+ be a
weight function on the edges. The minimum edge spread of H is defined to be the following
quantity.

MESP (H) = min
π : V→{1,...,n}

max
e∈E

w (e) · volπ (e) .

7.4.3 Connection to the C1P

The minimum linear arrangement and the bandwidth of a graph on n vertices measure, in
some sense, how far the graph is from the path on n vertices. Given a path, its minimum
linear arrangement is exactly n − 1, and its bandwidth is exactly 1. These are the best
possible values for any graph, since the vertex ordering defined by the path does not induce
any edge to stretch.

But is there a similar notion for hypergraphs? What exactly do the cumulative stretch
and the cumulative spread measure? For that matter, what is the analogue of a path for
hypergraphs? There could well be many suitable answers to that, and indeed, there have
been many definitions for a ‘path’ in hypergraphs [114, 115, 199]. We will add another
definition to this list, and make a case for why it is useful.

Definition 7.7. Given a hypergraph H = (V,E), and a set of vertices S ⊆ V , the induced
hypergraph H [S] is a path if the incidence matrix associated with H [S] has the consecutive
ones property.

This definition needs some background. The notion is motivated by the forbidden sub-
structure classification of consecutive ones matrices. Tucker proved that a binary matrix
has the consecutive ones property if and only if it avoids 5 classes of submatrices, 2 of fixed
size, and 3 of variable size [202]. This family submatrices have since been called Tucker pat-
terns. The bipartite representation of these matrices/hypergraphs, with the white vertices
representing vertices, and the black ones representing hyperedges, are shown in Figure 7.2.

It is a simple observation to note that, for a graph, the presence of a branching (a
vertex of degree 3) or a cycle is the only obstruction to a linear order of minimum value
(i.e. bandwidth 1 and linear arrangement score n−1). In the matter of hypergraphs, this role
is played by Tucker patterns, which again skew the minimum cumulative stretch, minimum
edge stretch, minimum cumulative spread and the minimum edge spread costs.

Observation. The cumulative stretch and cumulative spread of a hypergraph H = (V,E),
w : E → R+, as well as its edge stretch and edge spread, is minimized when H has the
consecutive ones property.

This fits the analogy to paths, and lends some credence to the claim. Note, however,
that the guaranteed value of these objective functions is not going to be a constant in
the number of vertices anymore. The value of the minimum cumulative stretch for a C1P

99

k ≥ 1

y z

x

(a) GI,k

k + 1 ≥ 2

x

y z

(b) GII,k

k + 1 ≥ 2

y z

x

(c) GIII,k

x

y z

(d) GIV

x y

z

(e) GV

Figure 7.2: The Tucker patterns. Hypergraphs are represented as bipartite graphs, with
white nodes depicting vertices, and black nodes representing hyperedges. The first three
patterns are parameterized by their size, while the other two are of fixed size. We have
marked three vertices in each pattern. These form asteroidal triples, vertices such that
there is a path between any two which avoids the closed neighbourhood of the third.

hypergraph H = (V,E) with weights mapping to 1, for example, will be ξ =
∑
e∈E |e|,

which depends on the structure of H.
Recall we stated that the bandwidth problem on graphs is known to be notoriously hard

even for trees [149], while the minimum linear arrangement problem is more tractable [49,
96,195]. The gist of the algorithm is simple enough to describe in a few words: find a vertex
such that all the subtrees created by deleting this vertex are small, and order these subtrees
recursively. Then combine the orders such that the vertices of the smallest trees are placed
on either side of the chosen vertex, and the vertices of successively larger trees are placed
framing the previously constructed ordering of vertices on either side. The analysis, though,
is highly non-trivial.

One may ask if there are similar instances for hypergraphs. The minimal obstruction
definition of the consecutive ones property allows us to formulate the following conjecture.

Conjecture 7.1. Let H = (V,E) be a hypergraph which avoids all Tucker patterns except
possibly GIII,1 and GIV . The minimum cumulative stretch problem on H can be solved in
polynomial space and time.

The corresponding Tucker patterns are shown in Figure 7.3. These are the only Tucker
patterns in which deleting a single hyperedge causes the hypergraph to become disconnected,
and thus capture a ‘tree-like’ notion on hypergraphs. As a result, we call such instances
hypertrees. Algorithms for the minimum linear arrangement on trees rely on recognizing a

100

(a) GIII,1 (b) GIV

Figure 7.3: Tucker patterns that are allowed in hypertrees. Note that deleting a single
hyperedge in these two patterns renders them disconnected.

vertex which is used as a pivot around which the arrangement is made. A similar argument
is shown in a minor result on a small class of hypertrees in Appendix D.

Finding a minimum edge stretch ordering of a hypertree seems a much more daunting
challenge [149]. Perhaps more interesting is the existence of a fixed parameter tractable
algorithm for this problem when parameterized by the size of the vertex cover [80]. The key
behind such an algorithm for the graph bandwidth problem is the fact that the complement
of a vertex cover is an independent set of the graph. The analogous concept in hypergraphs
would be to parameterized the maximum edge stretch problem by the size of the hitting set.
However, the complement of a hitting set need not be an independent set anymore, which
means the arguments for graphs will not work here. It is more likely that we will have to
include an extra parameter, such as the maximum hyperedge size, in order to retain fixed
parameter tractability. So this remains a field to be explored.

Since we are motivating this study as a possible method to detect chimeric hyperedges,
one particular point of interest would be to measure the relative deviation from the C1P
brought about by the addition of a hyperedge to a hypergraph that has the C1P. If the
hypergraph formed by adding the hyperedge still has the C1P, then of course the problem
is trivial. But consider the following problem.

Problem 7.3. Let H = (V,E) be a hypergraph that has the C1P, and let e ∈ 2V be a
hyperedge such that H ′ = (V,E ∪ {e}) does not have the C1P. Find a C1P ordering of H
such that the edge stretch (edge spread) of e is minimized.

If a C1P ordering of H that minimizes a consecutivity measure for the new hyperedge
e can be found efficiently, then one can infer whether the hyperedge e is chimeric or not
depending on the value of this measure. Finding such a C1P ordering can be interpreted

101

1 1 0 0
1 0 1 1
1 1 0 1
0 1 1 0

(a) A binary matrix M .

5 -2 -1 -2
-2 4 -1 -1
-1 -1 3 -1
-2 -1 -1 4

(a) The Laplacian of M .

Figure 7.6: The Laplacian matrix associated to a binary matrix M . The Laplacian LM is
not unique to M .

as searching and restricting the permutations encoded by a subtree of the PQ-tree data
structure associated to the hypergraph H. If this can be done efficiently for the number of
gaps, edge stretch or edge spread of e, it is possible to obtain some conclusions about the
relative ‘badness’ of the hyperedge.

Spectral methods for C1P problems

Since the notions of stretch and spread can serve as a measure of how close a hypergraph is
to having the C1P, one would expect that there are heuristic algorithms for the C1P that
compute near optimal orders. However, to our knowledge there is only one algorithm that
can handle non-C1P instances and return a meaningful vertex order for the same. This
algorithm was originally defined for the following problem, which is called the seriation
problem.

Problem 7.4. Let A be an n × n real symmetric matrix. Does there exist an n × n

permutation matrix P such that the following properties holds true for the matrix B =
P TAP?

bi,j ≤ bi,j+1 for j ≤ i,

bi,j ≥ bi,j+1 for j ≥ i.

Atkins et al. developed a spectral algorithm for the seriation problem [9]. This algorithm
is of interest because, given a hypergraph H having the C1P, i.e. its incidence matrix M
has the C1P, the algorithm, when run on the symmetric matrix A = MTM , outputs the set
of permutations that are the C1P orderings of M . The crux of the algorithm is to minimize
the following objective function.

min
x∈Rn,xT1n=0

xTLAx
xTx , (7.1)

where LA is the Laplacian matrix associated to the incidence matrix M and to the sym-

102

metric matrix A. This is the matrix with off-diagonal entries (−aij), and diagonal entries∑
j 6=i aij . The optimal solution to this problem is the second eigenvalue of LA. By sort-

ing the eigenvector associated to that eigenvalue, and using a recursive divide-and-conquer
strategy, the output can be read out as a PQ-tree.

The interpretation of the permutations encoded in the PQ-tree is not obvious when
the matrix M does not have the C1P. Vuokko showed that they minimize the principal
component of a norm which computes the total number of gaps (consecutive blocks of
0-entries between 1’s) in M [205]. Formally, Vuokko’s result reads as follows.

Theorem 7.3. [205] Let M be an m × n binary matrix. Let P be an (n+ 2) × (n+ 2)
permutation matrix, and S be the (n+ 1)× (n+ 2) discrete differential operator, and let M̂
be the matrix in which a column of 0’s is added to the beginning and end of M . Let L be the
Laplacian matrix associated toM , and let L = RΛRT be its eigenvalue decomposition, where
R = (r0 . . . rk−1), and Λ is a diagonal matrix with distinct eigenvalues of L, λ0 < . . . < λk−1

as entries. The Frobenius norm of the matrix ‖SPM̂T ‖F , which is given by

‖SPM̂T ‖2F =
k−1∑
i=0

(α− λi) ‖SPri‖2,

where α > maxi λi is a positive real number, is the total number of gaps in the matrix M̂
when ordered by the permutation matrix P . Then, Atkins et al.’s spectral algorithm outputs
a set of permutations that minimize the second term of this formula.

In this sense, Atkins et al.’s algorithm serves as a heuristic for Problem 7.1. However,
it is instructive to note that the objective function (7.1) can be rewritten as follows.

n∑
i=1

n∑
j=1

aij (xi − xj)2 ,

where n is the number of columns in M , and aij is the corresponding entry in A. This
entry is simply the number of rows in which both column i and j have a 1. In terms of
hypergraphs, this is the number of edges that contain both vertices, the one corresponding
to column i, and the one corresponding to column j.

If all hyperedges in H have weight 1, then aij is precisely the number of times that the
vertices u, v, corresponding to the indices i and j respectively, occur in the same hyperedge.
Thus, we are summing over pairs of vertices within a single hyperedge for all hyperedges.
If we replace the term (xi − xj)2 by |π (u) − π (v) |, the resulting objective function is the
following.

n∑
u,v∈V

∑
e∈E

δe (u, v) |π (u)− π (v) |,

103

where δe (u, v) = 1 if u, v ∈ e, and 0 otherwise. If we minimize this objective function
over the set of all permutations of the vertices instead of embeddings of vertices in R, this
is equivalent to the objective function for the minimum cumulative spread as stated in
Definition 7.5. The difference is that Atkins et al.’s approach uses a linear relaxation of
the objective with different constraints. It remains to be seen if there are spectral bounds
to the spread that can be obtained through an algorithm similar to the one described by
Atkins et al.

7.4.4 New results

Since the cumulative stretch and spread of a hypergraph are generalizations of the minimum
linear arrangement problem on graphs, there is no known polynomial time algorithm to
compute them. As stated, it is not even known if it is computable on hypertrees.

The main contribution in Chapter 8 is the adaptation of the approximation algorithm
for the minimum linear arrangement problem to compute the cumulative stretch and spread
with a factor of O

(√
logn log logn

)
of the optimum. This is the best possible approximation

bound using semidefinite programming with the stated constraints [59].

104

Chapter 8

Approximating vertex ordering
problems on hypergraphs

We described the motivation behind hypergraph vertex ordering problems in the previous
chapter. We stated that recent advancements in graph partition problems motivated the
state-of-the-art vertex ordering problems on graphs [6, 34]. Unfortunately, approximations
for hypergraph partition problems, which lead to vertex ordering approximations, are not
well-studied.1

In the case of the minimum cumulative stretch and spread problem, we show that we can
achieve approximation ratios similar to that for the minimum linear arrangement problem
on graphs. Using the techniques developed first by Rao and Richa [178], and later applied
to the minimum linear arrangement problem by Charikar et al. [34], and independently
by Feige and Lee [78], we can achieve an approximation ratio of O

(√
logn log logn

)
for

these problems. To give a brief overview, the idea is to relax the integer linear program for
the problems to a semidefinite program. After solving this semidefinite relaxation under
a certain set of constraints, the solution can be rounded through a recursive divide-and-
conquer procedure while keeping the cost of the linear arrangement bounded [76].

The result for the minimum cumulative stretch improve on the O
(
d
√

logn log logn
)
-

approximation obtained by Banerjee et al. [11], by making the approximation factor inde-
pendent of the size of the hyperedge. The result for minimum cumulative spread presents
a new way of characterizing how close to having the C1P an instance is.

Before we start discussing the results in this chapter, we present a few concepts on
metric spaces, which will be referred back to through the rest of the chapter.

1There has been some recent work to rectify this [129, 130]. These results show that the theoretical
approximation ratio achieved on hypergraph partitioning problems such as minimum expansion and small-
set expansion matches the corresponding results on graphs [8].

105

8.1 Spreading metrics and `2
2–representations

A crucial step in the algorithms for the minimum cumulative stretch and minimum cumula-
tive spread is to map the vertices to points in a vector space. This embedding is expected to
conform to a metric space on the set of points associated to the vertices of the hypergraph.
Then, this metric space is ‘flattened’ by mapping it to a line, thus finding an `1–metric.
The expectation is that we can find a ‘flattening’ that makes sure that the hyperedges are
not stretched too much.

The approach we take starts by defining the metric under which the points corresponding
to the embedded vertices in the vector space are chosen. Informally, the vertices must map
to vectors such that the square of the Euclidean distance between them forms a metric. For
a set of n objects, we define an `22–representation as follows.

Definition 8.1. [8] An `22–representation over n–points is a set of n vectors {x0, . . . ,xn−1}
such that the distance ` on this set, defined as ` (xi,xj) = ‖xi − xj‖2, forms a metric over
the set.

The word ‘representation’ is used to indicate that the vectors represent combinatorial
objects, such as the vertices of a graph, or, in our case, the vertices of a hypergraph. An
`22–representation can be described as a function f : V → Rd, and we represent f (v), v ∈ V ,
by xv.

At the same time, we have to make sure that the points that the vertices map to are
not too close to each other. Since we need a linear ordering, we need the points to be
spread apart such that, on mapping them to the real line, every subset of points is far
apart. Otherwise, we may end up with subsets of points that are clumped close together,
and if the set of vertices corresponding to the points has too many edges that go to vertices
outside this set, the stretch of these edges might not be easy to bound. This motivates the
next definition.

Definition 8.2. We say that an `22–representation on some set V of objects is strongly
well-spread if

∑
u∈S

` (xv,xu) ≥
(
|S|2 − 1

)
4 ∀ v ∈ S ∀S ⊆ V, |S| > 1, (8.1)

where xv is the vector associated with v ∈ V in the representation, and ` (xv,xu) = ‖xv −
xu‖2.

It is important to note that this notion of being ‘well-spread’ is a property of a metric
space, as compared to the ‘spread’ of a hypergraph, as used in Definitions 7.5 and 7.6.

Finally, we stated that we will be using a divide-and-conquer based rounding scheme
for the algorithm. This necessitates that we are able to find a discrete divide in the set of
points associated to the vertices. This is the motivation for the following definition.

106

Definition 8.3. Given a metric space (X, `), two points xi,xj ∈ X are said to be ∆–
separated if ` (xi,xj) ≥ ∆ for ∆ > 0. Two sets S, T ⊂ X are ∆–separated if every pair of
points xi ∈ S, xj ∈ T are ∆–separated.

8.2 Cumulative stretch

We will prove the following theorem on the approximability of the minimum cumulative
stretch.

Theorem 8.1. Given a hypergraph H = (V,E), |V | = n with non-negative edge weights
w : E → R, there exists a polynomial time algorithm which can approximate MCS (H) to
within a factor of O

(√
logn log logn

)
of the optimum.

In order to start designing the algorithm, the first observation we need to make is that
a permutation π on the set of vertices defines a natural metric, which is the difference
|π (u)− π (v) | in the positions of two vertices u, v ∈ V when permuted by π. This metric is
called a permutation metric, and it is unique to a permutation up to reversal. We will try
to find a metric which approximates the permutation metric defined by an optimal order
for the minimum cumulative stretch problem. To do this, we will relax the integer linear
program (ILP) associated to the cumulative stretch problem to a semidefinite program
(SDP).

In the next section, we first describe the linear program relaxation of the minimum
linear arrangement problem for graphs, as obtained by Rao and Richa [178]. This was
an important result, since the constraints used by them are the ones used for subsequent
results on the minimum linear arrangement, and will be the same that we use for the
minimum cumulative stretch problem. Furthermore, the methods used by them to obtain
the approximation ratio will be reused by us. Following this, we give the semidefinite
relaxation used to prove Theorem 8.1, and motivate it by the fact that the optimal ordering
for the minimum cumulative stretch is a feasible solution to this relaxation.

After we have introduced the setting of the problem, we will explain an important result
on well-spread representations, which forms a major argument in the algorithm. We use
this result and the solution to the semidefinite program in order to design the algorithm,
and follow this up by analyzing the performance of the algorithm.

8.2.1 Relaxing the integer linear program

The minimum linear arrangement problem for a graph G = (V,E) can be formulated as
an integer linear program, where we have to find a permutation π : V → {1, . . . , n} which
minimizes

∑
e∈E w (e) ·strπ (e). Alternately, we can formulate this as finding a permutation

metric which minimizes the ILP objective instead, where strπ (e) is the distance between
the two vertices in e, as defined by the metric. Since a permutation metric is unique to a

107

permutation up to reversal, it is easy to see that if a permutation gives the optimal value
of the linear arrangement, then so does its reversal.

The importance of a linear program formulation of a combinatorial problem cannot be
overstated. Integer linear programs are well studied, and highly generalizable. Even though
solving them is an NP-hard problem, they admit various relaxations in the constraints or the
solution space. Since linear programs are solvable in polynomial time [98], these relaxations
are often used as a first approximation to the solution to hard combinatorial problems,
which are then rounded to get an approximation bound.

Rao and Richa [178] used this very idea, along with the notion of approximating permu-
tation metrics by a spreading metric, to get an approximation of O (logn) for the minimum
linear arrangement problem on graphs. Their relaxation, in which they minimize over the
set of all spreading metrics `′, reads as follows.

min
`′ : E→R≥0

∑
e∈E

w (e) · `′ (e)

subject to

`′ (e) ≥ 0 ∀u, v ∈ V,∑
u

dist (u, v) ≥ |S|
2

4 ∀v ∈ S ∀S ⊆ V, |S| > 0,

where dist (u, v) is defined as the distance from u to v in the graph G, assuming that each
edge e has length `′ (e).

To understand the motivation behind the last constraint, note that in its absence, it
is possible for `′ to map edges to 0. This is obviously no good for us; in order to make
sure that the vertices are spread apart by `′, the spread constraint is added, though it is
slightly different from what we stated in Definition 8.2. This difference is a consequence
of the fact that the spread constraints in Rao and Richa’s formulation are based on the
distances assigned to edges by the metric `′. As we shall see in the later sections, we choose
to ignore distances defined by the underlying graph/hypergraph structure in subsequent
algorithms. Thus, while the minimum distance between vertices in the ILP relaxation is 1,
for the constraints we use, which are defined by (8.1), the minimum distance between any
2 vertices will be 3/4.

Under these constraints, the metric `′ is a relaxation of the permutation metric. Indeed,
the permutation metric satisfies both constraints specified in the ILP. This can be checked
with a polynomial time oracle specified by Even et al. [76], and which we explain in the next
section. Since we are indeed looking for a permutation metric on the set of the vertices,
this relaxation is suitable for our purposes.

108

8.2.2 Semidefinite Relaxation

The next evolution of the approximation for the minimum linear arrangement problem was
the use of a semidefinite relaxation instead of the linear programming formulation given
above. This was the idea behind the algorithms of Charikar et al. [34], and Feige and
Lee [78] for the problem.

In the case of the minimum cumulative stretch problem, the corresponding semidefinite
relaxation is given below.

min
x

∑
e∈E

w (e) se (8.2)

subject to

` (xv,xu) ≤ se ∀ u, v ∈ e, ∀ e ∈ E, (8.3)

` (xu,xv) ≤ ` (xu,xw) + ` (xw,xv) ∀ u, v, w ∈ V, (8.4)∑
u∈S

` (xv,xu) ≥
(
|S|2 − 1

)
4 ∀ v ∈ S, ∀ S ⊆ V, |S| > 1, (8.5)

where ` (xv,xu) = ‖xv − xu‖2.
Constraints (8.3) enforce the stretch condition. According to the given inequality, no

two vertices in a hyperedge e are mapped farther than se apart in the `22-representation.
Constraints (8.4) enforce the triangle inequality, making sure that the `22 distances computed
indeed form a metric. Constraints (8.5) make sure that the `22-representation is well-spread.

Note that there are an exponential number of spreading constraints. Since we want a
polynomial time approximation algorithm, checking all these constraints is not feasible. To
get around this, we will need to define a polynomial time separation oracle. The purpose
of this oracle is to check, for every candidate solution X = {x0, . . . ,xn−1}, if there is a
violated constraint, and if there is, to return that constraint. Such an oracle was specified
by Even et al. [76], and is given below.

1. For every i ∈ [n], order the distances ` (xi,xj) in ascending order for all j ∈ [n]
(including j = i).

2. For every k ∈ [n], compute the sum of the distance from xi to the k closest points
to xi. If this sum is under

(
k2 − 1

)
/4, return the set containing these points as a set

that violates a spreading constraint.

3. If no such i is found, all constraints are satisfied, and return X as a feasible solution.

It is easy to check that this algorithm runs in polynomial time. Given a point xi, ordering
the points in ascending order of distance to this point takes O (n logn) time, and it takes
O (n) to compute the sum of the distances for all sets. Doing so for all points, the total

109

runtime for the oracle is O (n (n logn+ n)). In order to check that this oracle does indeed
detect a violated constraint in (8.5), note that if a set of the k closest points to xi satisfies
the constraint, every other set of size k containing xi must also satisfy the constraint.

It is also important to note that an optimal solution to the cumulative stretch integer
program is a feasible solution to this SDP. Consider a permutation π of the n vertices of
the hypergraph H = (V,E) such that

∑
e∈E w (e) · strπ (e) is minimized. Construct the

following set of vectors X: for each vertex v such that π (v) = i, xi is the vector in Rn

with the first i entries being −1/2, and the next n − i entries being 1/2. Given xi and
xj , the distance ` (xi,xj) = ‖xi − xj‖2 will then be equal to |i − j|. So, it gives back the
permutation metric, which is known to satisfy all constraints of the SDP.

8.2.3 A divide and conquer algorithm

Divide-and-conquer using spreading metrics

Divide-and-conquer algorithms using spreading metrics to specify the subproblems was first
pioneered by Even et al. [76]. They used the concept for minimum linear arrangement in
graphs, and designed a polynomial time algorithm that gave an approximation guarantee of
factor O (logn log logn). While Rao and Richa improved upon their algorithm [178], it was
not until Arora et al. first used a mixture of semidefinite programming and metric embed-
dings to get an O

(√
logn

)
-factor approximation for sparsest cut that people started looking

at divide-and-conquer methods in conjunction with semidefinite programs. The motivating
theorem for the work on minimum linear arrangement since then was the following.

Theorem 8.2. [6,34,78] There exist c, ε > 0 such that, given a finite, strongly well-spread
`22–representation on n points, (X, `), we can find ∆–separated sets S, T ⊂ X of size at least
εn, where ∆ ≥ c

(
n/
√

logn
)
, in polynomial time.

This implies that if there is a strongly well-spread `22–representation formed by the
set of vectors X, we can find sets S, T ⊂ X which are sufficiently large and far apart.
An intuitive explanation of the rationale behind Theorem 8.2 is that, given a well-spread
`22–representation, one can project the points on a random hyperplane, and with high prob-
ability, a large number (a 2ε fraction at least) points will be projected ‘far’ (at distance
∆) on the hyperplane, into two sets of comparable size. This is a stronger separability
condition that the original separation argument made by Arora et al. [7], by virtue of the
strong spreading constraints being used.

The algorithm

Assume that the input hypergraph is H = (V,E), with weights w : E → R+ on the edges.
The first step of the algorithm is to solve the SDP specified by (8.2) for H. This can be
done in polynomial time and space, by using the ellipsoid algorithm [98].

110

Figure 8.1: Splitting the set of well-spread vectors using Theorem 8.2. The overlays repre-
sent hyperedges containing the vertices corresponding to the points in them.

Let the optimum value of the objective function of the semidefinite relaxation be W .
The output of the semidefinite program will be a positive-semidefinite n×nmatrix. One can
use a Cholesky decomposition to factor this matrix into n vectors in Rn, each associated to
a vertex V of the input hypergraph [98]. This gives an `22–representation of the hypergraph
H = (V,E), which we call the set X of vectors in Rn. Let xv denote the vector associated to
vertex v ∈ V , and let se denote the stretch of edge e calculated by the semidefinite program.

The next step of the algorithm is to apply Theorem 8.2 in order to find sets S, T of size
Ω (n), which are ∆-separated, for ∆ ∈ Ω

(
n/
√

logn
)
. The lower bounds on the size of the

sets S and T , as well as the exact value of ∆ are specified by Theorem 8.2. From now, we
will assume that the sets S and T have already been computed.

For a vertex v ∈ V , define ` (xv, S) = minxu∈S ` (xv,xu), i.e. the distance from xv to the
closest point in S. For a non-negative integer i, we define the ith neighbourhood of S as the
set Ni (S) = {v ∈ V : ` (xv, S) ≤ i}. This is the set of vertices whose associated vectors in
X are within distance i of some vector in S, with the distance being defined by the metric
`.

The ith level with respect to S, for i ∈ [∆], is the set Li (S) defined as follows.

Li (S) = {e ∈ E : ∃u, v ∈ e, ` (xu, S) ≤ i ∧ ` (xv, S) > i} . (8.6)

In a particular iteration of the algorithm, we will always keep the set S constant, and so we
refer to the ith-level simply as Li. The total weight of edges in the level Li will be denoted
by ρi, and will be called the weight of Li. The notion of levels is important because if an
edge is contained in levels Li and Lj , i < j, then it is also contained in Lk for all i ≤ k < j.
Thus, the set Li forms an edge cut in a hypergraph. Given Li (S), we denote this edge cut
by (Ni (S) , V \Ni (S)). We now specify the recursive algorithm used to prove Theorem 8.1.

111

1. If |E| = 0 or n ≤ b2/εc, where ε is the constant defined in Theorem 8.2,
return a random permutation of the vertices.

2. Find ∆–separated sets S, T ⊂ X using Theorem 8.2, |S|, |T | ≥ εn, where
∆ ≥

(
cn/
√

logn
)
.

3. Define levels Li with weight ρi, for i ≤ [∆], as stated in (8.6).

4. Check if there exists a level Lδ such that ρδ ≤ W/ (∆ logn). If yes, find the
edge cut (Nδ (S) , V \Nδ (S)) associated with Lδ. Delete the edges in Lδ and
compute the output of the algorithm on the two components of the cut. Let
the vertex orders output for the subproblems on the hypergraphs induced by
Nδ (S) and V \Nδ (S) be σδ and σ′δ respectively. Concatenate the two orders
to get π = σδ.σ

′
δ, and return π.

5. If no such Lδ exists, partition the levels into indices It for t ∈ N, where

It =
{
Li : 2tW

(∆ logn) < ρi ≤
2t+1W

(∆ logn)

}
. (8.7)

6. For t ∈ [2 + log logn], find an index It of maximum cardinality. Let this index
be Ik = {La1 , La2 , . . . , Laκ}, where a1 ≤ . . . ≤ aκ. Delete the hyperedges
in the levels in Ik, and then define Hi as the subhypergraph induced by
the vertices in Nai+1 (S) \ Nai (S), for i ∈ {1, . . . , κ− 1}. Let H0 be the
hypergraph induced by Na1 (S), and let Hκ be the hypergraph induced by
V \Naκ (S). Let ni be the number of vertices in Hi.

7. Recurse on each Hi. Let the vertex order output for Hi be called σi.

8. Concatenate the vertex order σi obtained for each Hi, and return π =
σ0.σ1.σκ.

Note that there are two branching steps in the algorithm. The first, in Step 4, decom-
poses the instance into two subproblems, each of which are solved independently, and whose
results are later concatenated. The second, in Step 6, branches into multiple subproblems,
and concatenates the results of each in the order of the subproblems.

8.2.4 Analyzing the algorithm

To analyze the algorithm, we set up a recurrence relation for the cumulative stretch under
the vertex order obtained. The value of the cumulative stretch for a particular vertex

112

ordering on a hypergraph H specifies a cost, for which we will find an upped bound using
this recurrence. The crucial ingredient is a charging scheme for the hyperedges, which
distributes the stretch of the hyperedge over its length.

Intermediary results

The following intermediary results are required to establish the recurrence relation for the
cost of the cumulative stretch. These results are extensions of arguments made by Charikar
et al. [34] for establishing approximation bounds for the minimum linear arrangement prob-
lem. The first is a lemma which establishes a lower bound on the stretch of a hyperedge
based on the indices of the levels it is contained in.

Lemma 8.1. Let {Lb1 , . . . , Lbk} be a set of levels, as defined in (8.6) such that b1 <

b2 < . . . < bk. Let e ∈ E be a hyperedge which is in levels Lbi and Lbj , bi < bj. Then,
se ≥ (j − i) /2.

Proof. Consider an edge e ∈ Lbi , Lbj . This implies that there are vertices u, v ∈ e such that
` (xv, S) ≤ bi and ` (xu, S) > bj . Here, we use the triangle inequality and the fact that
bi < bj . Consider a point xw ∈ S.

` (xv,xw) + ` (xv,xu) ≥ ` (xu,xw)

⇒ ` (xv,xu) ≥ ` (xu,xw)− ` (xv,xw)

⇒ ` (xv,xu) ≥ bj − bi
> bj − bi − 1,

since ` (xu,xw) > bj and ` (xv, xw) ≤ bi. We also know that bj − bi ≥ j − i for i ≤ j, giving
` (xv,xu) > j − i− 1 From constraints (8.5), we know that ` (x,y) ≥ 3/4. So, ` (xv,xu) ≥
max {3/4, j − i− 1} ≥ 1/2 (j − i). Since constraints (8.3) specify that se ≥ ` (xv,xu) for
all u, v ∈ e, we get se ≥ (j − i) /2.

A special case of this lemma happens when the set of level {Lb1 , . . . , Lbk} includes all
levels {L1, . . . , L∆}.

Corollary 8.1. Let e ∈ E be a hyperedge which is in levels Li and Lj, i < j. Then,
se ≥ (j − i) /2.

We will use this corollary in the next result. This result states that the total mass of
all levels {L1, . . . , L∆} is not too large. This is important, because it places a constraint on
how much an edge can stretch, or on how many edges can have a high stretch.

Lemma 8.2.
∑∆
i=1 ρi ≤ 2W .

113

Proof. Use Lemma 8.1 on the set of levels L1, L2, . . . , L∆. This gives 2se ≥ (j − i) for any
edge in levels i, j, 1 ≤ i < j ≤ ∆. Now, consider

∑∆
i=1 ρi. We can rewrite this as follows.

∆∑
i=1

ρi =
∆∑
i=1

∑
e∈Li

w (e)

⇒
∆∑
i=1

ρi =
∑
e∈E

w (e) | {Li : e ∈ Li} |

≤
∑
e∈E

w (e)× 2se = 2W.

This proves the lemma.

These results are sufficient to explain what happens when the bipartition step is chosen
in the course of the algorithm (Step 4). In order to analyze the rest of the algorithm,
though, we need to know the size of the largest index, which tells how many subproblems
the algorithm will recurse over (Step 6). We start by finding a lower bound on the total
number of levels having a weight at most 4W/∆.

Lemma 8.3.
∑1+log logn
t=0 |It| ≥ ∆/2.

Proof. From Lemma 8.2, we know that 2W ≥
∑∆
i=1 ρi. If we wanted to sum up the weights

of all levels having weight greater than 4W/∆, this value is an upper bound, since we do
not add up the weights of levels that are smaller. Let the number of levels with weight
greater than 4W/∆ be β. Then,

2W ≥ 4W
∆ β

⇒ ∆
2 ≥ β.

So, the number of levels with weight at most 4W/∆, is at least ∆ −∆/2 = ∆/2. By the
definition of indices, this is the same as the sum

∑1+log logn
t=0 |It|.

Using this sum, we can use a simple averaging argument to prove that the largest index
must contain a ‘lot of’ levels. This is the purpose of the next lemma.

Lemma 8.4. |Ik| ≥ ∆/ (4 log logn).

Proof. Lemma 8.3 tells us that the total number of levels of weight less than 4W/∆ is at
least ∆/2, and they are contained in 2 + log logn indices. Averaging this weight over
all levels, we can conclude that there must be at least one index of size greater than
∆/ [2 (2 + log logn)] ≥ ∆/ (4 log logn). This proves the result.

114

Charging scheme for the hyperedges

The proof of the approximation bound relies on a amortized-like analysis of the cost of the
stretch of the hyperedges. Consider a hyperedge e ∈ E. Assume that the index chosen in
Step 6 of the algorithm is {La1 , . . . , Laκ}, where ai < aj for all 1 ≤ i < j ≤ κ. Let edge e
belong to the levels Lai and Laj , i < j, and to no level Lak such that k < i or k > j. By
definition, e must also belong to all edges Lap , where i ≤ p ≤ j. When we partition into
subproblems using the levels in the index, we get subproblems {H0, . . . ,Hκ}, and of these,
the edge e would have stretched over all the vertices in each Hp, i ≤ p < j. It would also
have possibly stretched over some vertices of Hi−1 and Hj . This gives an upper bound of∑j
k=i−1 nk on the stretch of e under the vertex order obtained.
Instead, assign a charge to each hyperedge, with the rule that a hyperedge is charged

nk−1 + nk when it stretches over the vertices of Hk−1 ∪Hk. This is the charge associated
to the edge for belonging to the level Lak . For the edge e, which is contained exactly in
the levels from Lai to Laj , the total charge under this scheme will be

∑j
k=i (nk−1 + nk) =

ni−1 + 2 (ni + . . .+ nj−1) + nj .
When we partition the instance in many subproblems, and charge the hyperedges as

stated above, the total contribution of these edges to the cost of the ordering will be bounded
above using the charging scheme. In other words, the contribution is bounded above by∑κ
i=1 [ρi (ni−1 + ni)], since every edge in level i is charged ni−1 + ni.

Bounding the total cost

For convenience, round up every se as obtained from the semidefinite relaxation to dsee for
all e ∈ E. Let W be the value of the objective function (8.2) using the rounded values of
se. Since se ≥ 3/4 for all hyperedges, using |S| = 2 in constraints (8.5), we can conclude
that W ≤W +

∑
ew (e) ≤ (7/3)W ≤ (7/3)MCS (H).

Let C
(
Z, n

)
denote the maximum cost of the cumulative stretch ordering on n vertices

obtained by the algorithm such that the value of the rounded objective function (8.2) is Z.
The recurrence relation is set up into two cases. If the instance is bipartitioned, as in Step 4
of the algorithm, this means that there existed a level δ such that ρδ ≤W/ (∆ logn). In the
course of this bipartitioned, the hyperedges which were stretched out and removed from the
subproblems had a cumulative weight of at most W/ (∆ logn), and each of the hyperedges
in Lδ is stretched by at most n, i.e. from the first vertex in the ordering to the last vertex
in the ordering. Let the two subproblems obtained have maximum cost C

(
W 0, N0

)
and

C
(
W 1, N1

)
. The recurrence relation in this case is given below.

C
(
W,n

)
≤ C

(
W 0, N0

)
+ C

(
W 1, N1

)
+ nW

∆ logn, (8.8)

where, N0, N1 ≥ εn, since the subproblems contain the sets S and T respectively, and using

115

Theorem 8.2, S, T ≥ εn. Also, W 0,W 1 ≤ W , since these are strict subproblems, in the
sense that they contained fewer vertices and hyperedges.

If such a level does not exist, on the other hand, the partition in Step 6 divides the
instance into many smaller subproblems, depending on the number of levels in the chosen
index Ik. By definition, as stated in (8.7), each of the κ levels in Ik has weight greater than
2kW/ (∆ logn) and at most 2k+1W/ (∆ logn). Using Lemma 8.4, we can conclude that
κ ≥ ∆/ (4 log logn). Removing all the edges in the levels contained in Ik, the total weight
of the edges removed amounts to

∑κ
i=1 ρai/2, where {La1 , . . . , Laκ} are the levels contained

in Ik. This follows from Lemma 8.1, in the case we consider a hyperedge which only belongs
to a single level, when its stretch is at least 1/2. Now use the charging scheme described
in the previous section in order to bound the cost of the cumulative stretch from above in
this case.

C
(
W,n

)
≤ C

(
W −

κ∑
i=1

ρai
2 , n

)
+

κ∑
i=1

[ρai (ni−1 + ni)]

≤ C
(
W − 2k−3W

logn log logn, n
)

+ 2k+2nW

∆ logn . (8.9)

In the first line, the first term follows from the fact that the total cost of the edges removed
is at least

∑κ
i=1 ρai . The second term is a consequence of the charging scheme being used.

In the second line, we use the fact that the levels in Ik have tight bounds on their weights,
by their definition in (8.7). The lower bound is used in the first term to get an upper bound
on the total cost of the subproblems, and the upper bound is used in the second term.

Using recurrences (8.8) and (8.9), we can write the final recurrence relation for C
(
W,n

)
as follows.

C
(
W,n

)
≤ max

C
(
W 0, N0

)
+ C

(
W 1, N1

)
+ nW

∆ logn ,

C
(
W − 2k−3W

logn log logn , n
)

+ 2k+2nW
∆ logn .

To solve this recurrence relation, we use an inductive argument based on those of
Charikar et al. [34]. The key to solving this recurrence is to consider each case sepa-
rately. In the bipartition case, Theorem 8.2 provides tight constraints on the size of the
subproblems which can be used for the inductive hypothesis. In the multipartition case,
the inductive hypothesis is applicable since the total cost of the subproblems is guaranteed
to be less than that of the original instance.

Lemma 8.5. [34] There exists c′ > 0 such that C
(
W,n

)
≤ c′

(√
logn log logn

)
W for all

n ≥ 3 and W ≥ 0.

Proof. The induction is carried out over W + n. For the base case, consider Step 1 of
the algorithm. When W + n ≤ b2/εc, we automatically get n ≤ b2/εc, and output a

116

random ordering of the vertices. In this case, every layout has cost bounded from above by
c′
(√

logn log logn
)
W .

The induction hypothesis is that the result is true for all Z + n′ ≤W + n. Now assume
that the branching used is specified by recurrence (8.8). The stated recurrence is given
below for convenience.

C
(
W,n

)
≤ C

(
W 0, N0

)
+ C

(
W 1, N1

)
+ nW

∆ logn.

By Theorem 8.2, we know that the two subproblems must contain the sets S and T of size
at least εn each respectively. However, since the two subproblems consist of complementary
sets of vertices, we also obtain |N0|, |N1| ≤ (1− ε)n. Also, as we stated, W 0,W 1 ≤ W .
Then, using the induction hypothesis on W 0 + N0 and W 1 + N1, we get the following
expansion of the right hand side, in which we assume that C

(
W 0, N0

)
≥ C

(
W 1, N1

)
.

C
(
W,n

)
≤ c′

(√
logN0 log logN0

)
W 0 + c′

(√
logN1 log logN1

)
W 1 + nW

∆ logn

≤ 2c′
(√

logN0 log logN0
)
W 0 + nW

∆ logn

≤ 2c′
(√

log (1− ε)n log logn
)
W + W

c
√

logn
.

For the last inequality, we use the fact that ∆ ≥ cn/
√

logn. Now, given a, a + b > 0, we
have

√
a+ b ≤

√
a+ b/ (2/

√
a). This lets us resolve the right hand side as follows.

C
(
W,n

)
≤ 2c′

[(√
logn+ log (1− ε)

2
√

logn

)
log logn

]
W + W

c
√

logn

≤ c′
(√

logn log logn
)
W + W√

logn

(
c′ log (1− ε)

2 log logn+ 1
c

)
.

For n ≥ 3, if we set c′ ≥ 2/ (c| log (1− ε) |), the second term on the right is negative. This
completes this case for the recurrence.

For the second case, we reproduce recurrence (8.9) here.

C
(
W,n

)
≤ C

(
W − 2k−3W

logn log logn, n
)

+ 2k+2nW

∆ logn .

Using the induction hypothesis, and the fact that ∆ ≥ cn/
√

logn, we can expand the right
hand side as follows.

117

C
(
W,n

)
≤ c′

(
W − 2k−3W

logn log logn

)√
logn log logn+ 2k+2W

c
√

logn
.

By rearranging terms, this becomes

C
(
W,n

)
≤ c′

(√
logn log logn

)
W − c′ 2

k−3W√
logn

+ 2k+2W

c
√

logn
.

In order to complete the proof, choose c′ ≥ 32/c.

C
(
W,n

)
≤ c′

(√
logn log logn

)
W,

Now, we can choose c′ = max {32/c, 2/ (c| log (1− ε) |)} to finish the proof of the lemma.

Since W is a lower bound on (7/3)MCS (H), this establishes an approximation guar-
antee of at most O

(√
logn log logn

)
times the optimum.

Algorithm complexity

We already stated that the semidefinite relaxation can be solved to within an arbitrary
additive error in polynomial time in the number of variables, as can the Cholesky decom-
position into n vectors. Notably, we only need to solve the relaxation once, and we use the
same set of vectors {x0, . . . ,xn−1} for all the recurrences within the algorithm. So, we only
need to prove that the number of recursive calls to the algorithm is polynomially bounded.
Let T (n) be the number of recursive calls to the routine on an instance of n vertices. We
always branch into at least 2 strictly smaller subproblems. If we branch into more than
2, then we branch into κ subproblems, where κ ≥ cn/

(
4
√

logn log logn
)
≥ 2, so we can

always assume 2 subproblems instead. We can establish the following recurrence relation.

T (n) ≤ 1 + T (N0) + T (N1) ,

where N0, N1 ≥ (1− ε)n. We use induction on n to prove that T (n) ≤ 2n − 1. For the
base case, we use n ≤ b2/εc. In this case, T (n) = 1, since the algorithm returns a random
order of the vertices without recursing on any components. Now, assume that the result is

118

true for all N ≤ n. We can use the induction hypothesis, since N0, N1 ≤ n.

T (n) ≤ 1 + 2N0 − 1 + 2N1 − 1

= 2 (N0 +N1)− 1

= 2n− 1,

where the last equality follows from the partitioning of the hypergraph. This proves that
the algorithm runs in polynomial time.

8.3 Spread

In this section, we prove the following theorem.

Theorem 8.3. Given a hypergraph H = (V,E) with non-negative edge weights w : E → R,
there exists a polynomial time algorithm which outputs a vertex order that approximates
MCSP (H) to within a factor of O

(√
logn log logn

)
of the optimum.

The proof of this theorem is relatively straightforward after we define the notion of a
primal graph of a hypergraph.

Definition 8.4. Let H = (V,E) be a hypergraph, and let w : E → R+ be positive weights
on the edges. The primal graph of H, denoted by P (H) is a graph on the set of vertices V
such that two vertices u, v ∈ V are adjacent in P (H) if and only if there exists a hyperedge
e ∈ E in which both u and v are present.

The weighted primal graph of H is the primal graph P (H) with a weight function ω on
its edge set, defined as follows.

ω ({u, v}) =
∑
e∈E

w (e) δuv (e) ,

where δuv (e) = 1 if u, v ∈ e and 0 otherwise.

We prove the following claim, which automatically gives the result of Theorem 8.3.

Claim. The spread of a hypergraph H = (V,E) with non-negative edge weights w : E → R
under a permutation π : V → {1, . . . , n} is equal to the cost of the linear arrangement of its
weighted primal graph P (H) under π.

Proof. The objective function for the weighted minimum spread problem is given as follows.

∑
e∈E

w (e)

 ∑
{u,v}⊆e

|π (u)− π (v) |

 ,

119

where π : V → {1, . . . , n} is a vertex ordering. Switching the order of the sums, we can
instead express this as

∑
{u,v}⊆V

ω ({u, v}) |π (u)− π (v) |,

where ω (u, v) =
∑
e∈E,u,v∈ew (e). The pairs of vertices which contribute to this sum will be

those that occur together in at least one e ∈ E, which are exactly the edges of the weighted
primal graph P (H). The contribution of the pair {u, v}, given by ω ({u, v}), is the weight
of the edge {u, v} in the weighted primal graph P (H).

By definition, the value of the rearranged objective function is the linear arrangement
of P (H) under π. So, the linear arrangement of P (H) under π has the same value as the
spread of H under π.

We can now run the approximation algorithms already known for the minimum linear
arrangement [34,78] on P (H) to solve the problem. This proves Theorem 8.3.

8.4 A note on the bandwidth generalizations

While we have given approximation algorithms for both the minimum cumulative stretch
and minimum cumulative spread of a hypergraph, we have kept silent on how to approximate
the minimum edge stretch and minimum edge spread. Feige proved that the approach
we have taken for the algorithms in this chapter cannot yield good approximations for
bandwidth problems on graphs [77]. The notion of volume respecting embeddings, used to get
polylogarithmic approximations for the bandwidth problem [77] might prove a way around
this. Alternately, there has been work done on generalizing the triangle inequality [28,
29]. This concept, combined with suitable restrictions, might prove a way beyond the
approximation guarantees we are able to obtain.

120

Part IV

Applications: Software and Results

121

Chapter 9

A package for ancestral genome
map reconstruction

The theoretical problems we have discussed till now have important implications in genome
mapping and scaffolding. Here, we will see how some of the results and methods discussed
have been incorporated into software for ancestral genome mapping. The main topic in
this chapter is the basic structure of software implemented for ancestral reconstruction.
We introduce this through ANGES, a package implemented for reconstructing ancestral
genome maps based on phylogenetic information [110]. Many of the basic techniques used
in further chapters are implemented in this piece of software, and it serves as a good example
to demonstrate comparative methods in ancestral reconstruction problems.

ANGES was joint work with Cedric Chauve, Bradley Jones and Eric Tannier. The data
structures, the common intervals algorithm for permutations and the main C1P routines
were coded by Bradley Jones, while the common intervals algorithm for sequences and the
spectral heuristic were coded by Rajaraman.

9.1 ANGES: Ancestral genome mapping ignoring repeats

ANGES (Reconstructing Ancestral Genomes Maps) is a package written in Python which
is designed to reconstruct ancestral genome maps given a set of non-overlapping ancestral
genomic segment (markers), with their positions on the genomes of related extant species,
and a species tree for the species of interest. The package is designed to handle maps with
single occurrences of a marker, i.e. unique markers, though the input may contain extant
genomes with multiple occurrences of a marker. The principle underlying the workings
of the package are related to the C1P, and work by constructing a binary matrix and
optimizing it to get a C1P matrix.

122

9.1.1 Input data

ANGES takes in a species tree as input, with the ancestor of interest marked in the tree.
It also takes in a set of non-overlapping markers in the extant species present in the tree,
with their positions on the extant genome marked. The markers need not be unique in the
extant species, and may be missing in some of them.

Both the species tree and the set of markers are expected to be precomputed. It is
important that the markers be non-overlapping in the extant genomes. Otherwise, it is
difficult to determine the syntenies between markers, especially if we have some markers
which are completely contained in another.

9.1.2 Inferring adjacencies and intervals

The input set of markers in ANGES can be filtered by various criteria. For each of these
options, we may choose to filter on only the ingroup species as defined by the position of
the ancestor in the phylogeny.

1. Unique markers: This option discards all markers that appear more than once in an
extant genome. Thus, it filters repeats in the extant genomes.

2. Universal markers: This option discards markers that are not present in all extant
genomes.

3. No filter : In this case, the set of markers is taken as given.

Once the filtering step is performed, adjacencies between markers are computed using
a Dollo parsimony argument in ANGES.

Definition 9.1. [81] Consider a phylogeny over some evolving binary character, with the
values of the character known at the leaves of the phylogeny. The Dollo principle states
that if there are two leaves in which the character is present, then it is also present in all
ancestors lying on the evolutionary path between these two leaves.

Thus, for any ancestor, if there exist two extant species which contain an adjacency, and
the unique path in the species tree between these species passes through the ancestor, then
the adjacency is present in the ancestor [43].

ANGES also provides a routine to compute reliable adjacencies. These are adjacencies
which are present in all solutions for the double-cut and join median of 3 extant genomes,
the extant genomes being defined such that the ancestor lies on the evolutionary path of at
least 2 of them [38].

ANGES provides 2 different routines for recognizing unordered intervals of markers. In
each case, the routine used computes common intervals, intervals that exist in two extant
genomes on whose evolutionary path the ancestor lies.

123

1. If the markers have exactly one occurrence in every extant species (i.e. they are unique
and universal), ANGES uses the common intervals algorithm of Bergeron et al. [18]
to determine common intervals in a set of permutations. This can be done in linear
time in the number of markers.

2. If the number of occurrences of the markers varies in the extant species, ANGES uses
the algorithm of Schmidt and Stoye [188] to compute common intervals in sequences.
This procedure takes quadratic time in the number of markers, and is a bottleneck
for large scale computations.

The set of adjacencies and intervals computed describe ancestral contiguous sets (ACS), sets
of ancestral markers that are inferred to be contiguous in the ancestral genome of interest.
ANGES does not currently provide the capability to compute ordered intervals.

ANGES can take parameters which restrict the set of intervals computed to adjacen-
cies, maximal intervals (common intervals which are not contained in any other interval),
and strong intervals (common intervals which are either completely contained in or com-
pletely contain other intervals). The intervals are weighted using the phylogenetic weighting
scheme of Ma et al. [135]. Alternately, ANGES can take a precomputed, preweighted set of
adjacencies and intervals as input.

In the event that certain markers are missing from some of the extant genomes due to
evolutionary events such as gene loss, ANGES implements methods to post-process ACS in
order to account for missing markers.

9.1.3 Finding a C1P submatrix

The adjacencies and intervals are compiled to form a binary matrix, with the markers as
columns. Since the evolutionary hypothesis is that the ACS should be consecutive in the
ancestor of interest, ANGES checks if this matrix has a C1P variant, specified by the user
depending on the structure of the ancestral genome. If it does have the C1P variant, it
computes a PQ tree, or a related data structure [142], and outputs the set of Q nodes
attached to the root as a set of contiguous ancestral regions (CARs).

For most data, however, the obtained matrix does not have the C1P variant desired. In
this case, ANGES provides a greedy heuristic that discards the lowest weight adjacency or
interval until the remaining submatrix has the C1P variant. While not optimal in general,
experiments on test data show that the number of rows of the matrix which need to be
discarded is usually quite small. The PQ(PQC)-tree is then computed for the remaining
submatrix, and the CARs are output accordingly.

Alternately, ANGES also implements a branch-and-bound algorithm that computes the
maximum weight subset of ACS which satisfy the C1P variant. This algorithm takes expo-
nential time in the worst case, but if the number of ACS to be discarded is very small, then
this is reasonably efficient.

124

ANGES also computes a PQR-tree [142], which contains R-nodes that localize the parts
of the matrix which lead to a breakdown in the C1P structure.

9.1.4 A spectral heuristic

As a final option, ANGES allows us to use the spectral algorithm of Atkins et al. [9] as a
heuristic. This is particularly useful when there is uncertainty regarding the presence of a
marker in an adjacency or interval. In such cases, the user can assign a confidence measure
for the uncertain markers, and the usual adjacency-interval binary matrix is allowed to have
entries in the interval [0, 1]. The resulting matrix, say M is then used to compute a square
matrix A = MTM . The matrix A is used as input to the spectral algorithm for the seriation
problem. The output of the algorithm is a PQ tree, which, if the matrix M has the C1P, is
the correct PQ tree.

If M does not have the C1P, then, through Vuokko’s work [205], we know that we
are minimizing the principal component of a norm related to the number of gaps in the
matrix, so in some sense, these are permutations that keep colocalized markers ‘close’. An
interpretation in terms of the cumulative spread of the corresponding hypergraph would
allow us to get a more concrete characterization of the output.

9.2 Applications and extensions

ANGES has been used to map ancestral grass genomes [156], and was also used recently
used to map ancestral mosquito genomes, a project in which we participated [164]. We also
used it as a platform for the development of more sophisticated tools for mapping ancient
genomes.

The next two chapters cover the applications of variants of ANGES to different data
sets. In Chapter 10, we introduce FPSAC, a software for scaffolding ancient contigs with
repeats. The underlying framework for FPSAC was based on ANGES, and developed to
include the computation of the markers, ordered intervals, and gap filling. FPSAC was used
to scaffold the ancestral Black Death genome [177]. This builds upon the work of Bos et
al., who provided an initial set of ancestral contigs to work with [25].

Chapter 11 discusses the results of ANGES while mapping the genomes of ancestral
Anopheles mosquitoes [164]. This is followed by the introduction of FPMAG, an augmen-
tation of ANGES using techniques from FPSAC. This allows us to reconstruct ancestral
genome maps with repeated markers. We introduce preliminary results of FPMAG applied
to the Anopheles data.

These new methods and software use the maximum matching algorithm of Maňuch et
al. for optimizing over adjacencies [138], which returns a set of adjacencies that are realizable
in a mixed genome model. Linear genome maps are reconstructed by, deleting the lowest
weight adjacency from circular CARs.

125

Chapter 10

Scaffolding ancient contigs

One of the applications for the methods discussed in this document is in the field of palaeomi-
crobiology, which aims at analyzing ancient microorganisms, especially pathogens obtained
from the remains of infected hosts [68, 72]. A major motivation for the field is to un-
derstand the evolution of pathogens and of their relation with their hosts [67, 207]. The
genome sequence of ancient pathogens, thus, is of significant interest in palaeomicrobiology,
and with modern sequencing technologies, getting DNA sequence data for these organisms
has become considerably easier [25,140,168,190,191,212].

In this chapter, we will discuss a pipeline for scaffolding contigs assembled from ancient
reads. The pipeline, called FPSAC, uses phylogenetic information in order to compute and
finish the ancestral genome sequence. This was work done in collaboration with Cedric
Chauve and Eric Tannier.

10.1 Ancient DNA: challenges and solutions

The problem with ancient DNA sequences is that DNA decays fast, and so the reads ob-
tained are usually of low-quality and very short. When these reads are assembled into
contigs, there may be considerable fragmentation in the contig assembly, and a large part
of the genome may be left uncovered. For example, in a recent study assembling the an-
cestral plague genome, over 2.3 million ‘high quality’ reads were obtained, with an average
length of 55.53nt, and they were assembled into 2,134 contigs of size greater than 500nt [25].
This precludes a detailed genome-scale study of the evolution of the structural organiza-
tion of the genome. Such organization may be related to the pathogeneticity of an ancient
microorganism, so obtaining it is a key step in studying ancient pathogens.

In order to accurately scaffold contigs from ancient reads, one cannot use existing
methodologies. These techniques rely on data such as mate-pair libraries with mixed insert
sizes [12, 33, 66, 89, 180, 183], genome maps [127], or comparison with one or several closely
related genomes [94, 118]. Due to the decay and fragmentation of ancient DNA molecules

126

(whose length depends on many factors, but that can be as short as 300nt [72]), reads from
ancient genomes are expected to be short, and genome maps or mate-pair libraries with
long inserts are not available. With the lack of this data, and such extensive fragmentation,
it is not possible to scaffold ancestral contigs, except perhaps for short DNA molecules such
as plasmids. These may be sufficiently covered by the assembled contigs, which allows us
to scaffold them into molecules.

The only option left is to use a comparative approach. This involves comparing the
contigs with one or more closely related genome sequences or maps [106, 154, 181]. For an
ancestral genome, however, comparison with a single reference genome, either a descendant
or an outgroup, is likely to predict derived syntenic features as ancestral [181]. This becomes
a problem when the genomes contain many repeats and are highly rearranged [54].

This is the specific problem we seek to address, by using phylogenetic information to
scaffold ancient contigs. These methods were applied to scaffold the main chromosome
of the ancestral Black Death genome, for which a draft assembly was provided by Bos et
al. [25].

Available methods for ancestral reconstruction were not usable on the type of data we
were considering: highly conserved sequences with significant repeat content. Some methods
cannot reconstruct ancient genomes with repeats [135]. While software like DUPCAR [134]
can indeed reconstruct ancient genomes with repeats, they also expect the gene trees of the
repeated genes as input. With high sequence conservation being one of the major character-
istics of the data, it is not possible to accurately infer such gene trees. Other software does
take into account repeats, but reconstruction may be based on genome rearrangement mod-
els. In GapAdj, for example, the only duplication mechanism considered is whole genome
duplication [88].

As a result, we developed a scaffolding pipeline called FPSAC which was tailored to
our purpose. The next section discusses the working of this pipeline, and the features
implemented in it.

10.2 Methods: FPSAC

FPSAC (Fast Phylogenetic Scaffolding of Ancient Contigs) is a Python-based pipeline that is
used to scaffold ancestral contig sequences into chromosomal segments, using phylogenetic
information. The scope of FPSAC takes into account repeated ancestral segments. The
algorithms are based on the theory behind the consecutive ones property with multiplicity.

FPSAC takes a set of contigs for an ancestral species, a species tree containing this
species and the complete DNA sequences of the extant species. FPSAC follows a generic
scheme for ancestral genome reconstruction [43, 110, 135], a pipeline that can be roughly
divided into four sequential parts.

1. Defining homologous marker families. We define a homologous marker family as

127

one or more contig segments (ancestral markers) and several non-overlapping extant
genome segments (extant markers) that have a high pairwise alignment score along
their whole length. Each such family is assigned a multiplicity which bounds the
number of ancestral markers from the family in the ancestral genome of interest.

2. Selecting putative ancestral adjacencies. Two ancestral markers are said to form an
ancestral adjacency if they are inferred to have occurred consecutive to each other on
the genome of the ancestor of interest. Ancestral adjacencies are predicted using a
Dollo parsimony principle, using the internal position of the ancestor in the phylo-
genetic tree. Adjacencies are weighted according to their phylogenetic conservation,
and define a weighted adjacency graph.

3. Computing the ancestral scaffolds. The set of putative adjacencies may not be real-
izable in the mixed genome model while respecting the multiplicities of the markers.
If so, we compute a maximum weight subset of the adjacencies that permits a valid
genome structure. Next, in order to resolve ambiguities and repeated marker orga-
nization, we compute conserved intervals spanning repeats and use these to resolve
marker ordering in a way similar to the use of mate-pairs to scaffold extant genomes.

4. Finding ancestral gap sequences. We estimate the length of the ancestral gap between
the markers involved in ancestral adjacencies from the length of the gap between
the corresponding extant adjacencies (extant gaps). We perform a multiple sequence
alignment on the sequences of the extant gaps whose length agrees with the estimated
ancestral gap length in order to reconstruct a putative ancestral gap sequence.

10.2.1 Defining homologous marker families

A marker family is composed of at least one ancestral contig, and several non-overlapping
extant genomic segments that can be pairwise aligned with high similarity. To define them,
we map the ancestral contigs onto the extant genomes using Megablast [5], such that an
alignment of at least 100nt is found, which has a similarity of at least 95%. Megablast was
used since we expect highly conserved sequences in the ancestral and extant genomes that
we wish to study; for genomes with less sequence conservation, it may be more beneficial
to use other tools, such as Blast [5]. As a result, we can obtain relatively long hits having
high similarity.

The aligned segment defines a significant hit on both the ancestral contig and the extant
genomes. Then, using an iterative segmentation procedure, we produce contig and extant
genome segments such that the following two conditions are satisfied.

1. Contig segments must align over their whole length to extant genomes segments.

128

Contig C1

Contig C2

Genome G1

Genome G2

A

B

C

C

C

C

C

B

BA

A D

D

D

Segmentation

A

A B
C

D

Figure 10.1: A schematic of the segmentation procedure used to obtain homologous marker
families. For this example we consider two contigs C1 and C2 and their alignments on
two genomes G1 and G2. Segment C from C1 and C2 align to the same positions in both
genomes, including two different positions on G1. Segments A and B of C1 align at two
different positions of G2. After segmentation, we obtain four families with non-overlapping
ancestral markers A, B, C and D, which satisfy properties (1) and (2) given in the text.
Note that family corresponding to segment C contains two ancestral segments, from each
of the contigs, two extant segments from G1 and one from G2. According to the number of
occurrences in other genomes, this family may have a multiplicity > 1.

2. Contig segments must align to extant genome segments without two alignments over-
lapping.

If either of the two conditions is violated, the contigs or the corresponding extant genome
segments are cut in order to get a full-length, non-overlapping alignment on the extant
genomes.

Assume that a there is a segment [a, b] of a contig with length ` which aligns to an extant
genome, such that a > 1 or b < `, i.e. the alignment is not over the entire length of the
contig. We can assume a > 1, since the other cases are similar. Then divide the contig into
2 segments, one being the segment on the interval [1, a−1] of the contig, and the other being
the segment on [a, `]. Divide the corresponding genome segments accordingly, and also cut
all other alignments of this contig which overlap the coordinate a into 2 segments. Apply
this procedure till (1) is satisfied for all pairwise alignments, and no further segmentation
can be carried out. This defines a new set of pairwise contig/genome alignments.

Now, condition (2) may be violated, since there may be two different contigs with
segments aligning to two overlapping regions of an extant genome, say [a, c] and [b, d],
with a < b < c < d. In this case, the two contigs are cut into two segments so that the
four resulting segments align to genome segments with coordinates [a, b], [b, c] (for two of
them) and [c, d]. This is shown in Figure 10.1. Iteratively apply the procedure until (2) is
satisfied. This might lead to condition (1) being violated again. In order to make sure that
the procedure converges, we remove short alignments (under 100nt, the minimum length of

129

a significant hit) and repeat the two procedures until (1) and (2) are both satisfied. The set
of all aligned sequences can then be clustered into sets of highly similar ancient and extant
sequences, forming the homologous marker families.

Note that some ancestral contigs may not map to every extant genome. This may
indicate potential evolutionary breakpoints.

Marker multiplicities. Once the marker families are defined, ancestral multiplicities,
or copy numbers, are assigned to these families. These indicate the number of times an
ancestral marker of the family is expected to occur in the ancestral genome. To do this,
we compute the number of occurrences of extant markers in the family along the extant
genomes, and minimize the number of evolutionary gain-loss events along the branches of
the species tree. This is done using a linear time dynamic programming scheme [52].

10.2.2 Selecting putative ancestral adjacencies

In FPSAC, as in ANGES, ancestral adjacencies are inferred using a Dollo criterion on the
phylogenetic tree [43]. The adjacencies are also weighted by the same procedure.

Each ancestral and extant marker is decomposed into two marker extremities, a head
and a tail, in order to account for the orientation of markers in predicted ancestral syntenic
features. This is a standard approach in genome rearrangement studies [38]. Adjacencies
are defined in terms of marker extremities instead of the markers themselves, and are
computed following a Dollo parsimony principle [43]: two ancestral marker extremities
form an ancestral adjacency if they are contiguous (no other marker is between them in the
chromosome) in at least two extant genomes whose evolutionary path in the species tree T
contains the ancestor.

Adjacencies are then weighted according to their patterns of phylogenetic conserva-
tion [43, 135]. The weighted adjacency graph is defined as follows: its vertices are the
markers extremities and its edges are the weighted adjacencies.

Computing ancestral scaffolds.

We define an ancestral scaffold as a linear or circular order of the ancestral markers. It
is possible that the set of putative ancestral adjacencies does not directly give us a set of
ancestral scaffolds. This may be because (1) there does not exist a set of linear or circular
marker orders in which each adjacency is represented, and which respects the multiplicity
of each marker. It is also possible that (2) even if the adjacencies can be organized into
ancestral scaffolds, there is more than one possible set of scaffolds which contain all adja-
cencies and still respect the multiplicities of the marker families. The latter case occurs due
to the presence of repeats.

130

To address concern (1), we compute a maximum weight subset of ancestral adjacencies
such that every marker extremity belongs to a number of adjacencies that is at most the
multiplicity of the marker family [138,208]: for an ancestral marker of multiplicity k, each of
its extremities can belong to at most k ancestral adjacencies. It is possible to compute such
a subset of ancestral adjacencies which is compatible with an order of the markers into a set
of linear and/or circular scaffolds in polynomial time [138]. However, the algorithm does
not allow us to control the resulting chromosomal structure, or the number of molecules
obtained. Such a constraint would render the problem NP-hard [134]. But if the resulting
set of adjacencies can be organized into a set of linear scaffolds, then this defines an optimal
set of scaffolds.

As stated, though, the presence of markers with multiplicity greater than 1 may cause
there to be multiple marker orders with which the optimized set of adjacencies is compatible.
These markers cause tangles in the adjacency graph, leading to ambiguities regarding the
structure of the ancestral genome.

In order to address concern (2), we infer conserved intervals, sequences of markers that
span markers of multiplicity > 1. We first recognize repeat clusters, maximal connected
components of markers having multiplicity > 1 in the adjacency graph. We define repeat
spanning intervals on these repeat clusters by Definition 3.2. A repeat spanning interval
is said to be conserved if it is compatible with two extant genomes in the species tree T ,
such that the evolutionary path between the two genomes in T passes through the ancestor.
These intervals are also weighted by a phylogenetic score, as in the case of adjacencies. We
can compute all conserved intervals in time linear in the total size of all the repeat clusters.

Theorem 6.1 states that it is not possible to optimize over the set of conserved intervals
in order to find a subset of intervals which is both compatible with the set of adjacencies
retained in the previous step, and which satisfy the multiplicity constraints on the mark-
ers. Instead, we use Theorem 4.1 as a heuristic: for each repeat cluster R, we greedily
select repeat spanning intervals that are compatible with the adjacencies selected during
the previous step which containing markers of R and satisfy the multiplicity constraints of
the markers of R.

10.2.3 Finding ancestral gap sequences

A pair of adjacent marker families in the ancestral scaffolds, say X and Y, define an ancestral
gap. In order to complete the scaffold, we need to fill in the gap sequence between all such
pairs X-Y. To do this, we consider the extant genomes in which occurrences of X and Y are
consecutive (no extant marker is between them) and in the same respective orientations as
in the ancestor, thus defining an extant gap X-Y.

If we find the same adjacent marker families, say X and Y, forming an adjacency in
an extant species, we find the extant gap corresponding to X-Y. A conserved extant gap is

131

an extant gap whose length is equal in 2 extant genomes whose evolutionary path passes
through the ancestor of interest, i.e. the length is conserved by a Dollo criterion. The min-
imum and maximum lengths of these extant gaps specify a length interval for the ancestral
gap X-Y. In the absence of a conserved extant gap, the length interval of an ancestral gap
X-Y is assigned to be the interval between the minimum and maximum lengths between
X-Y in all extant species that the adjacency is present.

The ancestral gap sequence is estimated by performing a multiple sequence alignment
between all the extant gap sequences which lie within the defined length interval of th
ancestral gap. Then, we use a parsimony scheme to compute the ancestral gap sequence
from the alignment obtained, using the Fitch algorithm [83]. We remove all gaps in the
resulting sequence and assign this as the gap sequence for the ancestral gap X-Y.

10.3 Scaffolding the Black Death genome

FPSAC was used as a pipeline to scaffold the main chromosome of the ancestral Black
Death agent [177]. We present this work in the current section.

10.3.1 History

The Black Death was a pandemic that occurred mostly in Europe, from 1346 to 1353. The
pandemic is believed to be the cause of death of an estimated 75-200 million people in those
years. Since this was before the germ theory of disease was proposed, and indeed, before
even the tenets of hygiene had been lain down (something that was finally recognized only
in the nineteenth century), the cause of the pandemic was unknown, and basic preventative
measures could not be implemented.

A side effect of the lack of knowledge about the Black Death was that, until recently,
the causative agent of the pandemic was not known. The contemporary explanation in the
fourteenth century was that the pandemic was caused by ‘bad air’. The prevailing medical
theory was that it was a form of plague, caused by a variant of the bacterium Yersinia
pestis. But solid genetic evidence to support this took a long time coming.

10.3.2 The East Smithfield study

In a 2011 paper, Bos et al. sequenced DNA extracted from the dental pulp from bodies in
the East Smithfield burial ground in London [25]. This ground is believed to have been
established for the burial of victims of the Black Death. They obtained over 10 million
short reads, which were mapped to an extant strain of Yersinia pestis (CO92). Using
Velvet [214], these were assembled into 2134 large ancestral contigs which occurred on the
ancestral chromosome. This confirmed that the causative agent of the Black Death was a

132

Yersinia_pestis_Pestoides_F

Yersinia_pseudotuberculosis_YPIII

Yersinia_pseudotuberculosis_IP_32953

Yersinia_pseudotuberculosis_PB1

Yersinia_pestis_Antiqua

Yersinia_pestis_Z176003

Yersinia_pestis_biovar_Microtus_str_91001

Yersinia_pestis_KIM_10

Yersinia_pseudotuberculosis_IP_31758

Yersinia_pestis_CO92

Yersinia_pestis_Nepal516

Black death
agent

Figure 10.2: The Yersinia species tree. The Black Death agent is depicted as the bold,
black node in the tree. It is conjectured to be ancestral to five Y.pestis species.

species of Yersinia pestis which is ancestral to most of the extant species they mapped the
reads against (see Haensch et al. [101], which gives previous evidence for this).

The ancestral contigs obtained in the process, however, only covered around 85% of the
expected length of the ancestral chromosome. Furthermore, the order of these contigs on
the chromosome was unknown. The Yersinia genomes have well conserved sequences, but
have high rearrangement rates.

10.3.3 Data

The input data consisted of 2,134 ancestral contigs assembled by Bos et al. [25]. Each of
these contigs had length greater than 500nt, and they were estimated to cumulatively cover
around 85% of the ancestral genome. We also had access to the DNA sequences of eleven
fully assembled chromosomes of Yersinia genomes. Four of these genomes were Yersinia
pseudotuberculosis strains, and seven were Yersinia pestis strains. Of the Y.pestis strains,
five are conjectured to be descendants of the Black Death strain. The species tree, depicted
in Figure 10.2, was inferred using SNP data [25,150].

10.3.4 Inferred homologous marker families

Homologous marker families for the ancestor were identified by mapping the 2,134 ancestral
contigs to 11 extant genomes in the species tree using the online version of Megablast [216].

Of the 2,134 contigs, 29 contigs did not map to any of the 11 genomes, leaving 2,105
ancestral contigs [25]. After recognizing significant hits and applying the pairwise trimming
process, we were left with 2,616 homologous marker families.

Ancestral multiplicities. Most marker families were inferred to have copy number 1.
Of the 21 remaining families, 20 had copy number 2 or 3. The remaining family was found

133

to correspond to the 5S ribosomal protein family. Since it had a copy number of 8, and it
was also short (133 nt), this family was discarded from the data.

Accounting for the copy number, the total length of the remaining families was 3,846,616
nt. The original set of contigs encoded 4,013,159 nt.

10.3.5 Selecting adjacencies and repeat spanning intervals

There were 2,634 parsimoniously inferred ancestral adjacencies. On running the optimiza-
tion algorithm on this set, only 6 adjacencies needed to be discarded in order to obtain
a maximum weight subset of adjacencies which could be realized into a set of linear and
circular scaffolds.

There were 29 conserved repeat spanning intervals detected. Using a greedy heuristic,
only 2 of them needed to be discarded to yield a subset which could be realized along with
the set of adjacencies into an unambiguous set of linear and circular scaffolds.

10.3.6 Completing the chromosome

Using the adjacencies and the repeat spanning intervals, we obtained 3 large linear scaffolds,
in which all ancestral families were present. Naively, there are 6 circular genomes that can
be constructed from these scaffolds. To find the correct genome, we looked for extant
adjacencies between marker families on the extremities of each linear scaffold. There was
no such adjacency supported by the extant ingroup species, but 2 were supported by all
outgroup species. This gave us a single linear scaffold. Finally, the adjacency between the
extremities of this scaffold were supported by a single outgroup species (Y.pestis Microtus),
and involved a marker which was absent from all Y.pseudotuberculosis species. This gave
us the final circular chromosome, as described in Figure 10.3.

10.3.7 Filling gaps

Out of the 2,636 ancestral gaps, only 22 did not have a length interval supported by the
Dollo parsimony criterion. Most of the gaps (2,561 of them) had a short length interval, of
under 10 nt. The sequences obtained from the alignment and parsimony were used to fill
the gaps, which filled the part of the chromosome between markers.

In order to fill the ancestral gaps, we aligned all extant gaps whose length fell in the
ancestral gap length interval using MUSCLE [74] (version 3.8.31). We constructed the
ancestral sequence from each alignment using Fitch’s algorithm [83]. This resulted into a
single sequence containing alternating sequenced ancestral contig segments and estimated
ancestral gap sequences, illustrated in Fig. 10.3. The total computation time, including the
Megablast alignments and the gap filling, took less than an hour on a dual core personal
desktop machine.

134

Figure 10.3: The reconstructed chromosome of the Black Death agent, on the left, compared
against the chromosome of Y. pestis CO92. The ribbons connect collinear chromosomal
segments. The outer track of the Black Death chromosome shows gap sizes, and the next
track shows the lengths of the marker families which have contributed to these gaps, with red
(respectively green, blue) indicating shorter (resp. mid-level, longer) sequence lengths. The
first two inside tracks represent annotated (green) and inferred (red) insertion sequences.
The inside track represents the level of breakpoint reuse between the ancestor and the
following strains: Y. pestis Antiqua, Y. pestis KIM10 and Y. pestis Microtus str. 91001.
This image was created using Circos [124]

135

10.3.8 Validating the method

In order to validate the method, we ran FPSAC on 50 simulated datasets. Each simulation
consisted of a randomly chosen extant genome from our data, which was designated as a
proxy for the Black Death genome. This genome was evolved along the Yersinia phylogeny
by performing a fixed number of random inversions along each branch. The number of in-
versions was chosen from the set {10, 20, 30, 40, 50}, and is an upper bound on the estimated
number of rearrangements in the real data. The extant genomes obtained after this process
are expected to be more scrambled than the extant genomes in the real data. Following this,
2,134 contigs were chosen along the simulated ancestral genome, having the same length
distribution as the original set of contigs. Ten pairs were chosen from these, and merged
to create chimeric contigs. The FPSAC pipeline was then applied to all 50 simulated data
sets, with the parameters carried over from those used for the actual Yersinia data.

The resulting output from FPSAC consisted of 2,808.42 families on average over all
50 datasets, from which 130.64 have copy number greater than 1. The scaffolding process
resulted in a single scaffold in all cases except for five, and the average number of scaffolds
was 1.18. Only 2 adjacencies, and only 3 repeat spanning intervals were discarded over
all 50 datasets. We found that 99.47% of the initial non-chimeric contigs appear in the
reconstructed ancestral sequence with at least 95% identity over 95% of their length. FPSAC
also reconstructed 98.66% of the gaps between consecutive ancestral contigs with the exact
length as in the simulated ancestor. Finally, 99.14% of the simulated chimeric contigs were
detected as chimeric.

These results are consistent with the high accuracy of reconstruction of ancestral gene
orders from randomly rearranged extant genomes [135]. The significant information recov-
ered by FPSAC is the high accuracy of ancestral gap reconstruction.

10.3.9 Contig correction

An occurrence of an ancestral marker in the scaffold corresponds to one or several segments
of the initial contigs obtained by Bos et al. [25]. As such, one would expect to find the
original contigs on the final scaffold. The ordering of the markers is mostly compatible
with the initial contigs. Only one chimeric contig was found, split into two non-adjacent
markers in the ancestral genome organization. There were four contig segments which had
large subsequences (over 500 nt) duplicated in the ancestral genome, contradicting the initial
assembly, which predicted that these segments only had 1 occurrence. Also, 63 contigs were
found to have sequences that are actually contained in, up to small variations, within the
sequence of another contig. The initial assembly predicted them to be contigs with copy
number 1, so they seem to be either redundant, or they are derived from mutations of the
ancestral genome.

136

10.3.10 Analyzing the ancestor

The final ancestral sequence we obtained was of length about 4.6Mb, which is roughly
600kb more than the total length of the ancestral contigs obtained by Bos et al. [214].
Note, however, that the total length of the marker families themselves is only around 3.8Mb.
This means about 775kb were added during the process of gap sequence reconstruction. The
marker families occurring on the ancestral scaffold corresponded to one or more fragments
of the original 2,134 ancestral contigs, and the order of the families is mostly consistent
with the order of these fragments. Only one chimeric contig was detected, which was split
into 2 non-adjacent marker families in the scaffold.

Two of the six discarded adjacencies output by FPSAC provide evidence of a large-scale
inversion. Since both the selected adjacencies and repeat spanning intervals, as well as the
discarded ones, have similar phylogenetic support, the alternative genome structure, which
takes into account this inversion, cannot be ruled out as non-ancestral.

We also studied the evolution of the main chromosome of the Black Death agent at a
whole-genome scale. Insertion sequence (IS) elements have been suspected to be involved
into the high rearrangement rate of Y. pestis genomes [32]. On mapping extant IS to the
reconstructed ancestral chromosome, we obtained 92 ancestral gaps containing IS. This
comparative annotation agreed with an automatic annotation of the reconstructed chromo-
some sequence. We observed that a large proportion of these IS (at least 58) were already
present in older Y. pestis ancestral strains, but they are almost completely absent from the
genomes of the Y. pseudotuberculosis represented in the species tree. This provides evidence
that the Y. pestis speciation from its Y. pseudotuberculosis ancestor was characterized by
a burst of IS insertions [32].

We analyzed the genome rearrangement distances between the reconstructed ancestral
chromosome and the extant chromosomes by sampling inversion scenarios using DCJ2HP [148].
There are 8-9 inversions between the Y. pseudotuberculosis strains and the Black Death
genome, and 9-22 inversions when compared to the Y. pestis strains. This shows an accel-
eration of evolutionary rearrangement following the Y. pestis diversification.

We also observed that inversion breakpoints are not randomly distributed and used:
highly used ones are concentrated in one third of the chromosome, around its probable
replication origin, as noted by Darling et al. [54]. The positions of the inversion breakpoints
are highly correlated with IS, as remarked earlier [55]. Out of the 118 mapped breakpoints,
76 are close (<1,000 nt distant) to some predicted IS. This number drops to 39 for uniformly
sampled random coordinates (p-value <10−3). Rearrangements are numerous in all Y. pestis
branches, strongly suggesting that they could be driven by the IS.

137

10.4 Subsequent work

Future work on the Yersinia phylogeny will focus on reconstructing the whole genomes of all
ancestral species in the phylogenetic tree, including reconstructing plasmids. At this point,
the reconstruction and scaffolding problem becomes more complicated, since the number
of plasmids in the extant species varies between 1 and 3. While doing this, the choice
of a mixed genome model becomes an asset, since we can get multiple linear and circular
sequences of markers.

One of the avenues for FPSAC to expand into is the problem of trying to assemble
contigs that come from a mixture of microbial backgrounds, for example from de novo
assembly of reads obtained through shotgun sequencing. If we can classify the contigs into
subsets that denote well identified clades, then theoretically FPSAC can be used on each
of these subsets to obtain a set of ancestral scaffolds. This classification step poses the
major obstacle to such analysis, since it may be confounded by problems such as repeated
sequences belonging to several genomes [172]. In the event such challenges can be overcome,
FPSAC may be extended to scaffolding ancient metagenomes.

138

Chapter 11

Reconstructing Anopheles genomes

This chapter describes an applied project which has been undertaken in collaboration with
the Anopheles Genomes Cluster Consortium, the study of the genomes of 16 anopheles
mosquitoes [163], known to be vectors for the malaria parasite P. falciparum. The full
scope of this project was to sequence, map and analyze the given genomes in order to
recognize traits that influence vectorial capacity and might provide useful hints to develop
strategies to reduce the impact of malaria worldwide. The results of the project have been
accepted for publication in Science [164].

11.1 Context and overview

We were part of the team that analyzed chromosomal evolution, and our work addressed
three questions: (1) clearing some uncertainty in the phylogenetic subtree of a subset of
the species called the Gambia complex, (2) reconstructing gene orders for several ancestral
nodes of the Anopheles phylogeny, and (3) analyzing genome rearrangements along branches
of the Anopheles phylogeny using the reconstructed ancestral gene order. This project was
interesting to us, aside from its potential impact regarding an important health problem,
because it was an opportunity to illustrate the usefulness of reconstructing ancestral gene
orders in evolutionary studies.

However, the available data proved to be challenging in one important aspect, that is
the high fragmentation of the assembled genomes. Due to the difficulty in resolving repeats
in genome assembly and the large scale of the project, most assemblies were provided in
the form of large sets of scaffolds or supercontigs. This prevented the reconstruction of an-
cestral gene orders at the resolution of full chromosomes; instead, the reconstructed CARs
(Contiguous Ancestral Regions) were themselves fragmented, basically providing ancestral
genomes at the same resolution as the extant ones. Since the inception of the current
high-throughput sequencing technologies, that provide quick and reasonably priced genome
sequence data at the expense of poor assemblies, it has been assumed in the genome rear-

139

rangement community that starting from fragmented assemblies would likely prevent the
study of evolution in terms of large-scale rearrangements.

Our effort with the Anopheles data showed that while it is true that we could not provide
whole-genome evolutionary scenarios, we were able to highlight important evolutionary facts
in terms of genome rearrangements, such as an apparently higher rearrangement rate in
the X chromosome of Anopheles genomes than in autosomes (non-X chromosomes), thus
showing the reward was worth the effort.

In this chapter, we present our results, that were integrated in the flagship paper of the
Anopheles project [164], which were obtained using ANGES. Furthermore, we will describe a
new pipeline for ancestral genome mapping, which augments the existing ANGES software.
The main advantage of this pipeline is the ability to account for, and output, genome maps
with repeated markers. This pipeline, which we call FPMAG, is to be an extension of the
next major ANGES update, and is based on combining the principles of FPSAC to handle
repeats into ANGES. Here, we provide the details of the process, and the preliminary results
on the Anopheles genome data. We contrast the results obtained using FPMAG with the
original results obtained using ANGES.

11.2 Data: 16 Anopheles genomes

The input data consisted of gene families of orthologous groups delineated at the Dipteran
level from the OrthoDBmoz2 database of orthologous groups in mosquitoes [206], and GFF
gene files for the following 11 species: An. gambiae, An. arabiensis, An. quadriannulatus,
An. merus, An. stephensi, An. minimus, An. funestus, An. dirus, An. farauti, An.
atroparvus and An. albimanus. These species were chosen on the basis of the quality of
their assemblies as given in Neafsey et al. [163] and after discussions with specialists of
Anopheles genomes involved in the project. These files were processed to extract gene
families that occurred exactly once in each extant genome. The total number of gene
families thus defined was 5,343.

Anopheles genomes are formed of 5 main elements, called chromosome arms, which in
turn form 3 chromosomes: one sex chromosome (the X chromosome) containing a single
chromosome, arm and of two autosomes, each containing two arms. However, the arrange-
ments of the arms of the autosomes vary among the different Anopheles species. Table 11.1
indicates the level of fragmentation of the assemblies when limited to scaffolds and contigs
containing these 5,343 genes, that ranges from 6 segments for An. gambiae (a fully assem-
bled genome) to 826 for An. merus. In the case of An. gambiae, the assembled genome
consisted of 5 chromosomal arms, and 45 genes in unknown locations.

The species tree we used for the analysis defined over the 11 species is given in Fig-
ure 11.1.

140

Species name Number of arms/contigs/scaffolds Number of genes
An. gambiae 6 7,645
An. arabiensis 153 8,258

An. quadriannulatus 369 8,244
An. merus 826 7,771

An. stephensi 389 8,217
An. minimus 48 8,145
An. funestus 443 8,148
An. dirus 141 11,508
An. farauti 296 7,798

An. atroparvus 201 7,643
An. albimanus 44 7,544

Table 11.1: Details of the 11 extant anopheles genomes. The number of genes is given with
multiplicity.

11.3 Confirmation of the species tree

The topology of the tree at the ancestor G3 marked in Figure 11.1 (the An. gambiae
complex) is still subject to some uncertainty regarding the location of An. arabiensis and
An. quadriannulatus (see [163, Fig. 1]).

To validate the chosen topology of the An. gambiae complex, we considered the sub-
set of 446 one-to-one orthologous gene families which occurred in An. gambiae on the X
chromosome, since X chromosomes are known to be subject to less introgression [85]. We
noted that if An. gambiae and An. arabiensis form a clade, we get 20 syntenic conflicts
during the assembly procedure into CARs. On the other hand, if An. quadriannulatus and
An. arabiensis form a clade, only 4 syntenic conflicts needed to be discarded to get a set
of linear CARs, which supported the hypothesis stated by Fontaine et al. [85] regarding
the accuracy of this clade. This is also supported by the fact that with this topology, the
number of discarded adjacencies and intervals to clear syntenic conflicts on the X chromo-
some dataset is upper-bounded by 10 at each ancestral node, thus showing a low level of
syntenic conflict. In the case of deep ancestors, though, the increasing fragmentation, even
in the X chromosome dataset, shows a decay in the syntenic signal. This may be a result
of the fact that most extant genomes were fragmented into a large number of chromosomal
segments, except for An. gambiae, and to a lesser extent An. albimanus and An. minimus.
Thus, we would expect fewer conserved syntenies in deeper ancestors, which complicates
reconstructing a map with low fragmentation.

141

Figure 11.1: The Anopheles species tree, annotated with the results from ANGES. The
numbers at the extant species indicate the one-to-one orthologous families in the X chro-
mosome dataset (left annotation), and the whole genome (right annotation). The labels on
the internal nodes indicate the number of CARS on the X chromosome (left), the number
of CARS in the whole genome (middle), and the number of whole-genome CARS which
cover 90% of the one-to-one orthologous families (right), each as predicted by ANGES. The
numbers on the branches indicate the DCJ distance between two sets of X chromosome
CARS for the genomes at the extremities of that branch, obtained using UniMOG [105].

11.4 Reconstructed ancestral gene order with ANGES

ANGES was used to reconstruct the ancestral genome maps for all internal nodes of the
tree, except for the root, that appeared to be too fragmented from preliminary experiments.
Markers were doubled to account for gene orientation. The computed conserved syntenies
were composed of oriented gene adjacencies and strong common intervals using Dollo parsi-
mony, as well as gene adjacencies which were present in three extant genomes such that the
ancestor lies on the evolutionary path of at least two of them [38]. The locally conserved
syntenies were assembled into linear CARs using the greedy heuristic option of ANGES.

The results obtained by ANGES are summarized in Figure 11.1, which presents the data
on the whole genome as well as the X chromosome of the respective species.

The end result was still encouraging, and the data allowed the reconstruction of a
relatively well-defined sets of CARs. Fewer than 1% of the detected syntenies were discarded
during the assembly phase to obtain a set of linear CARs. In the worst case, an ancestor
was predicted to have 225 ancestral CARs.

To evaluate the impact of the fragmentation on the ability of addressing whole genome
evolutionary questions, we introduced a measure similar to the popular N50 measure in
genome assemblies: we define the NCARX as the number of CARs that contains at least
X% of the input (here 5,343) genes. We could observe that, for most ancestors, the NCAR50

142

and NCAR90 were relatively low: in general, less than 50% of the predicted number of CARs
at any ancestor were needed to cover 90% of the unique orthologous families. This suggests
that a few CARs capture the evolution of most of the anopheline genomes, except for the
ancestor of all anophelines and An. albimanus. For this extant species, the gene order
appears to be less conserved.

Finally, as an accuracy check, we could observe that for a very large majority of the an-
cestors, CARs were limited to genes from a single An. gambiae arm. This shows while that
it is not possible to reconstruct the chromosomal arm structure of the ancestral genomes, it
is possible to reconstruct chromosomal segments at the current fragmentation level of the
extant genomes used for the reconstruction.

11.5 Genome rearrangements in the Anophele phylogeny

Preliminary experiments showed that the chromosomal evolution of the Anopheles genomes
seemed to display an interesting phenomenon: the rate of rearrangements in the X chro-
mosome seemed to be much higher than the rate of rearrangements in the autosomes. The
ratio of rearrangement rates in the X chromosome was assessed by other members in the
chromosomal evolution group to be 2.7 times higher than the rate of genome rearrangements
in the autosomes, a striking difference to similar insects such as Drosophila where the ratio
was only of 1.2 [164].

However the fragmentation of the assembly was seen as a possible source of bias in
inferring genome rearrangements, due to possible genome breakpoints being attributed to
assembly discontinuity and rather than being actual evolutionary breaks. To account for
this effect, we computed the single cut-or-join distances [79] from the ancestral genomes
computed by ANGES to the extant genomes, and corrected these distances for potential ad-
jacency breaks due to assembly fragmentation as described below. These experiments were
meant as an independent confirmation of the rearrangement model used for reconstruction
by others in the group, as compared to the model-free approach taken by ANGES.

Analysis

We reconstructed the genomes for all ancestral species using the same gene family data as
before, but with syntenies restricted to supporting adjacencies between the markers. The
adjacencies in each ancestral and extant genome were classified according to the location of
the orthologous markers on An. gambiae orthologs: adjacencies for which both genes have
have orthologous markers on the An. gambiae X chromosome (respectively the autosomes)
are called X-adjacencies (resp. A-adjacencies), while the remaining adjacencies, whose
location as X chromosome adjacencies or autosome adjacencies is unclear, are called AX-
adjacencies.

143

Then, for each branch of the phylogeny tree, for a pair of genomes A and B, we used
a variant of the Single-Cut-and-Join (SCJ) distance which is aimed at correcting potential
false positive genome rearrangements induced by the fragmentation of assemblies or ances-
tral genome reconstruction [20]. Formally, the SCJ distance between two genomes is defined
as the number of adjacencies present in exactly one of the two genomes. The correction
checks if an adjacency (x,y) is present in exactly one of the two genomes, and if the gene
extremities defining it are both scaffold or CAR extremities in the other genome, then we
label it as a “potential false positive SCJ”, and do not consider it in the distance calculation.

We considered all pairs of genomes (A5,E) where E is an extant genome and A5 is the
ancestor labelled as such in Figure 11.1. We chose ancestor A5 as the oldest ancestor with
an acceptable level of fragmentation. For each such pair, we computed a proxy of the rate
of autosomal genome rearrangements, given by the ratio of the corrected SCJ distance for
A-adjacencies by the number of considered genes on the An. gambiae autosomes. There
were 4,877 such genes on the autosomes. Similarly, we computed the same proxy for with
the potential X chromosome genome rearrangement using the 466 genes on the An. gambiae
X-chromosome.

Results and discussion

The total number of A-adjacencies (respectively X-adjacencies, XA-adjacencies) found was
91,991 (respectively 8,595 and 252). The small number of XA-adjacencies justifies discarding
them from further studies. The complete results are summarized in Table 11.2.

The SCJ distance computed is a simplified rearrangement model, which makes many
problems concerning rearrangement distances tractable. However, the simplicity of the
model also means that any inference from the results obtained should take this into account.
The rearrangement distances and rates shown in Table 11.2 are likely to be higher than
in reality. Also, the definition of potential false positive SCJ might reduce the real SCJ
distance. But the corresponding biases must also be accounted for in the X chromosome
and the autosomes. In order to compare the rearrangement rates between the autosomes
and the X chromosomes, we take the ratio of the rates obtained, which we expect to be a
good estimation for the real ratio after such correction is made. The ratio shows a trend
of a higher rearrangement rate in the X chromosome than in the autosomes. This agrees
with data obtained in the study of chromosomal evolution in extant species An. gambiae,
An. stephensi, An. funestus, An. atroparvus, and An. albimanus using physically mapped
scaffolds [164].

We also observed lineage specificity in rates of chromosomal evolution. Since all studied
extant species are at equal distances from the common ancestor A5, we concluded that An.
dirus and An. farauti belong to the lineages with the most rapidly evolving chromosomes,
while the lineages that lead to An. minimus and An. merus have a relatively slow speed of

144

Genome
paired
with A5

Autosome
SCJ distance
(corrected)

X chrom.
SCJ distance
(corrected)

Rate in
autosomes

Rate in
X chrom.

Rate in
all chrom.

Rate ratio
Xchrom.
/autosomes

An.
farauti

282 85 0.058 0.182 0.24 3.154

An. dirus 263 98 0.054 0.210 0.264 3.899

An.
stephensi

201 65 0.041 0.139 0.18 3.384

An.minimus 207 34 0.042 0.073 0.115 1.719

An. funes-
tus

229 50 0.047 0.107 0.154 2.285

An. merus 200 45 0.041 0.096 0.137 2.355

An. gam-
biae

220 47 0.045 0.101 0.146 2.236

An.
quadria-
nnulatus

205 63 0.042 0.135 0.177 3.216

An. arabi-
ensis

216 60 0.044 0.128 0.172 2.91

Table 11.2: Rates of chromosome evolution between ancestral and extant Anopheles species.
The rearrangement rates supported those predicted by other members in the chromosomal
evolution group of the project [164].

rearrangements.

11.6 FPMAG: Using FPSAC techniques in ANGES

A new technique for genome mapping in the presence of repeats, which was proposed for
this project, and remained unused since we were working with unique markers, was to use
the methods implemented in FPSAC for genome mapping. These methods, compiled into
a series of scripts jointly called FPMAG (Fast Phylogenetic Mapping of Ancient Genomes),
can be stated as a 2-step process.

1. In the first step, we use adjacencies to find a genome map using just the markers having
copy number 1 (unique markers) in each of the extant species (universal markers).
We may also use unique markers, while allowing them to be missing in some of the
extant genomes.

2. In the second step, we separately find a map of the region between two unique mark-
ers on the previous map, using techniques borrowed from FPSAC. Since all unique,
universal markers were already considered, the set of markers in this maps will consist
only markers which are repeated in some of the extant genomes.

145

11.6.1 Identifying marker families and copy numbers

In this stage, the process used is very much the same as FPSAC. Given a set of possibly
overlapping ancestral gene families, an iterative truncating and merging procedure is used
to define non-overlapping families above a certain threshold length. The copy number of
these families on the extant genomes is defined as the number of times they appear on the
extant genome map. The copy number of the families in the ancestral species is defined
through a parsimony scheme [52], as in the case of FPSAC.

In the Anopheles data, 20,564 predefined families and their positions on the extant
genomes were given, of which 5,343 occurred in every extant species exactly once. We as-
sumed a copy number threshold of 5, and discarded all families having higher copy numbers.
Alternately, we can retain only the unique marker families, or unique marker families that
are present in all extant genomes descended from the ancestor under consideration.

11.6.2 Obtaining a genome map

We can use FPSAC’s methods for inferring and optimizing adjacencies to find a set of syn-
tenies that admit a realization in the mixed genome model. The set of inferred adjacencies
using the Dollo criterion is the same as the supported adjacencies inferred by ANGES, and
they are weighted by the same method. This does not include reliable adjacencies, adjacen-
cies which are present in 3 extant genomes such that the ancestor lies on the evolutionary
path between at least two of them. After obtaining the adjacencies, they are optimized
by the maximum matching algorithm [138], and we use the set of retained adjacencies to
construct a set of CARs, and hence, a genome map. However, this genome map does not
contain any repeated markers.

The genomes of the Anopheles ancestors are linear, but the optimization algorithm finds
a set of adjacencies which are realizable in the mixed genome model. Therefore, we have to
linearize any circular CARs that we obtain. In order to do this, for every circular CAR, we
discard the lowest weighted adjacency and make it linear.

The comparison of the number of CARs obtained by this methods to that obtained by
ANGES using the same set of unoptimized adjacencies, and by ANGES using unoptimized
adjacencies and strong intervals on the Anopheles data is illustrated in Table 11.3. The map,
in the case of both ANGES and FPMAG, was constructed using only unique and universal
markers. We can see that the number of CARs obtained is often significantly reduced by
using FPMAG, as long as we are only using adjacencies to assemble the map. On including
strong intervals in ANGES, we may obtain better results using ANGES, since many CARs
may be scaffolded together by the intervals. The key factor to preferring FPMAG over
ANGES, however, is that it uses an exact optimization routine, and it lets us incorporate
the next step, in which we include repeated markers in the map.

146

Species Adjacencies
found

ANGES
(with adja-
cencies)

ANGES
(with adjacencies,
strong intervals)

FPMAG

ADIRW, AFARF 5,289 104/50 4/54 95/50

AFUNF, AMINM 5,321 39/17 34/17 36/17

AFUNF, AMINM,
ASTES

5,338 31/26 27/26 28/25

AQUAS, AARAD 5,273 76/6 75/6 49/6

AQUAS, AARAD,
AGAMP

5,349 33/39 23/42 20/39

AQUAS, AARAD,
AGAMP, AMERM

5,320 65/42 50/42 49/42

AQUAS, AARAD,
AGAMP, AMERM,
AFUNF, AMINM,

ASTES

5,356 41/54 31/55 36/53

AQUAS, AARAD,
AGAMP, AMERM,
AFUNF, AMINM,
ASTES, ADIRW,

AFARF

5,291 115/63 83/64 96/62

AQUAS, AARAD,
AGAMP, AMERM,
AFUNF, AMINM,
ASTES, ADIRW,
AFARF, AATRE

5,060 321/38 277/40 226/35

Table 11.3: Comparison of ANGES with adjacencies, ANGES with adjacencies and inter-
vals, and FPMAG on the ancestral Anopheles data, using unique and universal markers.
The ancestors are labelled by their extant descendants, with the key as follows: A. arabien-
sis (AARAD), A. quadriannulatus (AQUAS), A. gambiae (AGAMP), A. merus (AMERM),
A. funestus (AFUNF), A. minimus (AMINM), A. stephensi (ASTES), A. dirus (ADIRW),
A. farauti (AFARF), A. atroparvus (AATRE). In the other columns, the first number is the
number of CARs found in the map, while the second number shows the number of discarded
adjacencies and intervals.

147

11.6.3 Identifying repeated markers between unique markers

Up to now, the only difference in the ANGES and FPMAG pipelines has been the opti-
mization criterion for the set of adjacencies/intervals. In ANGES, it is possible to infer
intervals, and the optimization algorithm used to find a set of CARs is a heuristic which
discards adjacencies and intervals by their weight. In FPSAC, the only intervals which we
can infer are repeat spanning intervals, but due to the absence of repeats in the previous
stage, no such interval will be found. The optimization step is again based on the maximum
matching argument of Maňuch et al. [138].

In the next stage, FPMAG treats each adjacent pair of unique markers on the ancestral
map as the telomeres of a chromosome. Then, for all extant species which contain this
adjacency on filtering for repeats, it finds repeated gene families that occurred between this
adjacent pair of unique markers. Thus, we get a set of repeated markers and the two unique
markers that frame them, forming a repeat cluster and frontier vertices respectively. This
defines a new instance for each adjacent pair of unique markers on the map obtained at the
end of the first stage of FPMAG.

On each such instance, we can run FPMAG again, this time without discarding repeats,
since there are only 2 unique markers. By doing so, for each adjacent pair of unique markers
on the original ancestral map obtained, we can get a submap, which is either empty, i.e. there
were no repeats mapped between the two unique markers, or we get a set of CARS consisting
of only repeats which fills the space between the unique markers.

11.6.4 Preliminary results

The results obtained by running FPMAG for the Anopheles ancestors is summarized in
Table 11.4. In each case, at least 80% of the expected number of markers were recovered on
the reconstructed ancestral map. The NCAR50 was always under 20% of the total number
of CARs, even for the oldest ancestor. At most a total of around 15% of the adjacencies
inferred within the subproblems between unique markers had to be discarded, which is
higher than the usual expected value discarded for optimization. For repeat spanning
intervals, as many as 40% of the inferred intervals in the subproblems had to be discarded.

11.7 Observations

The conclusion reached from the preliminary experiments using FPMAG is that the current
iteration of the method does not immediately offer massive benefits over ANGES, other than
being able to incorporate repeated markers. ANGES has the added advantage of being able
to use intervals to piece together larger CARs, which means that the obtained genome map
may be far less fragmented than the one obtained by FPMAG.

This does not mean that the development on the FPMAG front has stopped. Since

148

Sp
ec
ie
s

Ex
pe

ct
ed

G
en

es
La

rg
es
t

N
C
A
R
50

/
N
C
A
R
90

/
A
dj
.

R
SI
s

ge
ne

s
fo
un

d
C
A
R

C
A
R
s

C
A
R
s

di
sc
.
(%

)
di
sc
.
(%

)
A
D
IR
W

,A
FA

R
F

12
,0
20

10
,3
27

74
3

28
8/

12
56

/4
4

8.
76

27
.6
0

A
FU

N
F,

A
M
IN

M
11

,6
44

10
,5
21

1,
94

9
51

9/
5

15
8/

20
5.
67

15
.5
2

A
FU

N
F,

A
M
IN

M
,

A
ST

ES
11

,7
64

10
,5
18

1,
40

0
79

0/
5

17
3/

15
8.
70

8
21

.6
7

A
Q
U
A
S,

A
A
R
A
D

11
,9
83

10
,9
29

1,
01

1
44

7/
8

12
2/

26
4.
36

15
.8
5

A
Q
U
A
S,

A
A
R
A
D
,

A
G
A
M
P

12
,4
37

11
,0
06

2,
31

2
1,
27

4/
3

46
0/

10
10

.6
0

32
.2
8

A
Q
U
A
S,

A
A
R
A
D
,

A
G
A
M
P,

A
M
ER

M
12

,4
61

10
,5
23

1,
66

2
45

3/
6

13
0/

22
13

.8
3

37
.3
3

A
Q
U
A
S,

A
A
R
A
D
,

A
G
A
M
P,

A
M
ER

M
,

A
FU

N
F,

A
M
IN

M
,

A
ST

ES

12
,2
63

10
,4
28

1,
47

2
65

0/
6

16
6/

36
15

.2
7

40
.3
4

A
Q
U
A
S,

A
A
R
A
D
,

A
G
A
M
P,

A
M
ER

M
,

A
FU

N
F,

A
M
IN

M
,

A
ST

ES
,A

D
IR
W

,
A
FA

R
F

12
,3
71

10
,3
78

81
9

26
4/

12
59

/4
2

14
.6
1

39
.5
6

A
Q
U
A
S,

A
A
R
A
D
,

A
G
A
M
P,

A
M
ER

M
,

A
FU

N
F,

A
M
IN

M
,

A
ST

ES
,A

D
IR
W

,
A
FA

R
F,

A
AT

R
E

12
,1
11

9,
72

8
51

7
12

7/
25

19
/1

00
9.
60

27
.6
8

Table 11.4: Summary of FPMAG results on the Anopheles ancestors. The NCAR50
(NCAR90) columns give the size of the CAR needed to achieve 50% (90%) coverage of
the total number of genes expected in the ancestral genome. The second number in the
same column indicates the number of CARs needed to achieve this coverage. The last 2
columns is the number of adjacencies and repeat spanning intervals discarded in the sub-
problems between unique markers, respectively.

149

the main obstacle to using FPMAG is the higher level of fragmentation, one logical way to
overcome this problem is to use the methods in ANGES in order to get a less fragmented
genome map on unique markers. Since we are using unique markers in the first step of
FPMAG anyway, this may be one way to resolve the issue. The other idea is to use FPMAG
to get a fragmented set of CARs, and then include intervals of unique markers, computed
by ANGES. These intervals can be used to scaffold together the fragmented CARs. Since
the sole intervals we are interested in are those that contain the extremities of the CARs
computed by FPMAG, we can compute such intervals efficiently.

The other major problem see from the FPMAG results is the large number of discarded
adjacencies and repeat spanning intervals when we add repeated markers in gaps between
unique markers. There could be many reasons for this, with one possible source of error
being the copy number estimation using Fitch parsimony. There are alternative approaches
to copy number inference for ancestral markers [52, 102]. It is not known if the results
obtained by using such approaches can significantly reduce the error.

Error may also arise from the fact that the gaps are often inferred to have very few
repeated markers. The repeat cluster in each gap over all species had at most 5 repeated
markers. This may point to two possible sources of error. Since the cluster is so small, it is
possible that certain markers are missing from the repeat cluster. Thus, certain adjacencies
and repeat spanning intervals may not be inferred.

Alternately, this may be a signal of introgression, and markers from a species may be
breaking up the synteny in another. In either case, it is worth considering if it is better to
use an explicit rearrangement model for small gaps. Ideally, this model should take into
consideration insertions and deletions in order to account for missing or extra markers,
which would account for the small number of syntenies discovered in each of these gaps.

150

Part V

Conclusion

151

Chapter 12

Conclusion

We will conclude this dissertation by summarizing the main contributions that have been
described in the previous chapters, and a list of open questions and projects.

12.1 Summary of contributions

12.1.1 Reconstructing genome maps with repeats

The first section dealt solely with the problem of reconstructing genome maps in the presence
of repeated markers. This is a well studied problem, and the methods we introduce in order
to establish repeat order and resolve ambiguities form a theoretical basis for many heuristic
methods already in present in some assemblers, which use long reads to resolve repeats [214],
or resolve small repeats [209]. A theoretical framework for the same makes sense from the
point of view of extending the approach to different problems. The framework we use is
a generalization of the consecutive ones property [15, 87], which has long been used for
reconstructing physical maps. The generalization incorporates data to represent repeated
genomic markers, and there has been a slew of recent work done on it [138,208].

An important theoretical concept we introduce into this framework, which seeks to
capture the essential information in long range synteny information spanning repeats, is
that of repeat spanning intervals. These are pieces of synteny information which encode the
order of a set of repeats which are framed by unique marker elements on a genome. Repeat
spanning intervals represent the internal organization of clusters of repeats on the genome,
and the unique markers framing the repeats provide information to resolve ambiguities
while constructing the map. The results we presented exploit the structure of the repeat
spanning intervals to obtain decision and optimization results.

The two main positive results we have to take back are the following.

1. Theorem 4.1 states, in brief, that if we are given adjacency information concerning
repeats, or the only long range synteny information containing repeats is in the form

152

of repeat spanning intervals, it is possible to determine if the data is consistent with
a viable marker order on a genome map having any given structure.

2. In Theorem 5.1, we are given a list of adjacent markers, including repeats, that can
be realized as a genome having both linear and circular chromosomes. Then, given a
list of short repeat spanning intervals, which contain exactly 1 repeat occurrence, we
can find the largest set of such intervals which is consistent with a genome map that
also contains all adjacencies.

The main negative result is a counterpoint to Theorem 5.1. The result established by
Theorem 6.1 states that if the synteny information available to us contains more than one
occurrence of a repeat, then even if we know that the underlying set of adjacencies admits
a genome map with linear and circular chromosomes, it is generally computationally hard
to find the largest set of repeat spanning intervals which is still consistent with a genome
map in this model which contains all adjacencies.

In addition, we presented two theoretical fixed parameter tractability results. Theo-
rem 4.2 states that if the set of repeats and the expected number of occurrences of the
repeats is small, then, if every piece of synteny information only involves a bounded num-
ber of markers, it is possible to determine if the data is consistent with a genome map in any
given model. Theorem 6.2 states that if the number of repeats and their expected number
of occurrences is small, it is possible to optimize on the set of repeat spanning intervals to
get a consistent set.

12.1.2 Determining genome organization through vertex ordering

The second set of theoretical results is related to vertex ordering problems on hypergraphs.
We generalized the problem of determining the minimum linear arrangement to hyper-
graphs. The motivation behind these problems was the possibility of being able to detect
synteny information with small errors in linear genomes without repeats. Such inferred syn-
tenies would be usually classified as chimeric by a heuristic while assembling the synteny
data into a viable linear genome. However, discarding such data could lead to the loss of
potentially useful information during the mapping process.

In this section, we presented two approximation results for the generalizations discussed.
Theorem 8.1 and Theorem 8.3 presented O

(√
logn log logn

)
approximations for both the

presented generalizations, where n is the number of vertices in the hypergraph. These are
based on the corresponding approximation algorithm for the minimum linear arrangement
problem in graphs [34,78].

153

12.1.3 Implementing and using the methods

The final contribution presented in the document is the implementation of the methods
discussed and developed in it, and using them to analyze real genomic data. There are two
major pieces of software we have presented here.

ANGES. ANGES is a software for reconstructing ancestral genome maps using phyloge-
netic information and the framework of the classical consecutive ones property [110]. It uses
combinatorial algorithms for detecting conserved syntenies on extant genomes, and uses al-
gorithms for detecting the consecutive ones property [142] in order to implement heuristics
that output a linear or circular genomic marker order. It also incorporates a spectral algo-
rithm for the consecutive ones property which serves as a heuristic for producing a similar
order while retaining the detected synteny information [9].

ANGES was used to find the ancestral genome maps for ancestors in the phylogeny
of the Anopheles mosquitoes [164]. For these genomes, using both adjacencies between the
given markers and some long range synteny information on them, we obtained genome maps
with reasonable levels of fragmentation considering the quality of the input data.

We also introduced an augmentation to ANGES, which we called FPMAG. This incor-
porates some of the techniques developed for reconstructing genome maps with repeats in
order to include repeated markers into reconstructions. We presented some preliminary re-
sults using this software on the Anopheles data, and concluded with a number of suggestions
how the results can be further improved.

FPSAC. The other major piece of software we introduced was FPSAC, which implements
a pipeline for scaffolding contigs that have been assembled from ancient reads using phyloge-
netic information. The software significantly accounts for repeats in the ancestral genome,
resolving them using long range synteny data extracted from related extant genomes. It
also uses the extant sequences to correct and fill the gaps between the scaffolded contigs.

FPSAC was used to scaffold the main chromosome of the ancestral Black Death agent
genome. Simulations done on the dataset using FPSAC provided evidence for the robustness
of the method used for scaffolding on the Yersinia data. The results obtained corroborated
earlier studies on the correlation between the locations of the breakpoints for the Yersinia
phylogeny and insertion sequences [32, 55], and show evidence of a large-scale inversion
during the evolution from the Black Death agent to the descendant species.

154

12.2 Extending this work

12.2.1 Theoretical questions

Genome maps with repeats

There are a number of theoretical questions that remain at the moment. A natural one
would be to ask if we can combine the strategy used in Theorem 5.1 and by Maňuch et
al. [138] to get an optimization algorithm which optimizes not only over the set of repeat
spanning intervals, but also over the set of adjacencies in the instance. The general case is
NP-hard [138], but there may still be restricted instances in terms of intervals which allow
a polynomial time optimization algorithm. This would provide an algorithm to compute
unambiguous genome maps when repeat content is masked, but repeat locations are fixed.
This can be followed up by using local methods to determine the content of the repeated
regions.

Question 6.1, which asks for the complexity of the partial optimization problem when all
repeat spanning intervals contain at most 1 copy of a repeat, points to another important
problem. A positive answer to this question would allow us to at least handle instances in
which a single repeat does not have 2 or more occurrences in close proximity.

The definition of a repeat spanning interval as specified by us is quite strict: it imposes
requirements for both the content and the order of the repeats. But it might be worth-
while to consider relaxing this definition. Such a relaxation may be in the form of merely
stipulating a content requirement, or even asking for a partial order on the vertices in the
interval. This would imply that we would lose control over the exact order of the repeats in
the interval, but it might allow the design of algorithms that exploit the relaxed structure.

Vertex ordering problems

In the case of hypergraph vertex ordering problems, there are quite a few open questions.
Both Question 7.1 and Conjecture 7.1 are major open questions regarding the polynomial
time solvability of restricted instances of vertex ordering problems. As of the writing of
this document, Question 7.1 has been open for over 4 years, and there is little to no known
convincing evidence for either side of the argument. Conjecture 7.1 is a newly formu-
lated problem, and the only advance made in proving it is the minor result provided in
Appendix D.

There are also few known approximability results for such problems. Theorems 8.1 and
8.3 are, to our knowledge, the first instances of such results, save the result by Baner-
jee et al. [11]. This is not for lack of tools to obtain such results, but more a result of
the relatively recent interest in analyzing partitioning and ordering problems on hyper-
graphs [129, 130]. Generalizing the known results for problems such as graph bandwidth,
cutwidth and distortion to hypergraphs may have significant implications on the applica-

155

bility of these parameters as measures of the error in synteny information obtained from
data.

In a similar vein, the absence of fixed parameter tractable algorithms and exact expo-
nential algorithms for hypergraph vertex ordering problems means that the comparative
virtues of such approaches to reconstructing genome maps are hard to analyze. Unfortu-
nately, while there are many such algorithms available for the corresponding problems on
graphs [23, 80], generalizing these algorithms directly to handle hypergraphs may not be
possible. The structure given by the bounded edge size in graphs is lost in hypergraphs.
For example, we discussed how the parameterization of the bandwidth problem on graphs
by the vertex cover [80] loses its nice structural properties when discussing hypergraphs.
It is more likely that we will have to include an extra parameter, such as the maximum
hyperedge size, in order to retain fixed parameter tractability.

Finally, the spectral approach we briefly discussed [9] should always be kept in mind.
This method has proved useful in effectively dealing with non-realizable instances and re-
turning a probable vertex order to reconstruct the genome map. However, apart from
Vuokko’s work [205], there are no theoretical justifications for why the order output by the
algorithm for non-realizable instances should perform well as a candidate genome map.

While this section has been mostly theoretical, we motivated it as a means of discerning
chimeric syntenies from those containing small errors. As of this moment, we still do not
have a precise idea as to how to tell them apart. Ideally, we would like to have a measure of
the veracity of a synteny. In terms of a vertex order, chimeric syntenies would correspond to
hyperedges that are stretched more than the prediction by this measure, and then we would
be able to actually use the ideas developed in this section for real applications. One idea,
as formalized in Problem 7.3 which might be useful is to take the PQ-tree of a hypergraph
which has the C1P, and find a permutation encoded in this tree such that, for some separate
hyperedge not in the hypergraph, some notion of stretch is minimized.

12.2.2 Extending and adapting the methods

An immediate concern is to refine the current FPMAG pipeline discussed in Chapter 11
to obtain better ancestral genome maps. One idea is to use ANGES to assemble the
backbone map consisting of unique markers and then using the FPMAG pipeline to include
repeats. We could also try to use an explicit evolutionary model for the evolution of the
genome between two unique markers. This model should account for insertions, deletions
and duplications of genes, which would take into consideration the fact that the content
between two unique markers will be repeats, and that there can be possible introgression.

Where FPSAC is concerned, the pipeline is as yet untested on larger, non-bacterial
genomes. In this context, while the principle behind the methods used should still apply,
the data becomes harder to analyze. As a consequence of the larger genome size, it is

156

reasonable to expect much higher fragmentation in the initial assembly. The extant genomes
being used for comparative scaffolding may also be longer. This may mean that different
parts of an ancestral contig may map to many places on an extant genome, not necessarily
consecutively, and we may also have many repeated regions. In this case, the final scaffold
obtained will show much higher fragmentation. One way to try and combine scaffolds is
to use reads that were discarded during contig assembly in order to fill the gaps. This is a
direction that has not yet been taken for ancestral scaffolding.

The scope of the methods discussed has been limited to ancestral genome reconstruc-
tion till now. FPSAC and ANGES are examples of how the theoretical framework fits with
the data available for such applications. However, the underlying theory should be extend-
able to many similar problems. The framework is not dissimilar to other models used in
bioinformatics. There has been some recent work done on reconciling the results from two
models from completely different fields in computational biology [128]. Such reconciliation
may result in methods from either model being used for the other.

As a result, we believe that the model presented in this manuscript can be generalized
and reconciled with existing models for genome assembly, mapping and scaffolding problems,
of both extent and ancestral genomes. The issue will be to assess the suitability of the
model, accounting for the nuances of the different data. Since the model is presented
in such a general context, it is also essential to know the possible pitfalls when attacking
other problems using it. For example, one may wish to use the model for scaffolding reliable
extant contigs. In this context, we can define the markers as contigs, and syntenies as sets of
overlapping contigs. Gaps can be filled using overlapping short reads discarded during contig
assembly. Using such a definition, perhaps the FPSAC method can be extended to assembly
and scaffolding of short genomes. Such a pipeline would necessitate the development of other
tools however. It is hard to determine repeated genomic regions in this approach, and we
have to resort to using coverage statistics in order to predict copy numbers. At the same
time, the model may be unsuitable for such applications, in which case the reason that the
model fails may be a pointer to better models for genome mapping and scaffolding.

12.3 Final thoughts and comments

Reconstructed ancestral genomes are a stepping stone for a large class of problems. It
adds to the already massive amounts of genomic data available, and moreover, it provides
a new perspective [131, 132, 152]. Accurately reconstructed ancestral genome maps are an
invaluable resource to understanding the factors behind evolution. With the availability of
good ancestral genome maps, we can start exploring whole genome evolution from the point
of view of the ancestral genomes rather than working from the ground up. This direction
of research can validate or point out flaws in the current models of evolution which are
accepted as standard in the community.

157

As a consequence of their role in studying evolutionary mechanisms, ancestral genomes
are also a key component in studying the effects of evolution on an organism. For example,
ancestral genome maps of bacteria also permit an extended study of the syntenic factors
behind the pathogeneticity of these organisms, and a parallel view of their evolution along
with the evolution of the host organism is a promising direction. Such a study can provide
enlightening clues to how the pathogen evolved to infect the host, and how it adapted
to various evolutionary changes in the host genome. The Yersinia project [177] and the
Anopheles project [164] can be seen as preliminary steps in such analysis. As more data
accumulates, and as better techniques and computational resources develop, one would
expect to uncover more and more biologically relevant data regarding the evolution of
pathogens and vectors, what evolutionary change made them harmful to the host, how did
they adapt to evolution within the hosts and so on.

Another long term project would be the use of ancestral genomes in reference assisted
assembly. Reference based assembly is gaining a lot of popularity [118, 120] due to the
large number of completely sequenced genomes that are appearing at a rapid rate. In the
presence of ancestral reads or sequences, it is desirable to have a global assembly framework,
in which we can jointly assemble extant and ancestral genomes in a phylogenetic context.
Using such a framework, it may be possible to correct assembly errors using data from
multiple related sequences, at the same time keeping in mind the evolutionary history of
the genomes. It may also be possible to set up a cycle in which an assembled ancestral
genome, containing information from ancestral reads, can be used to correct the assembly,
mapping and scaffolding of extant genomes which were used as a reference to assemble it.

A technical point which we did not discuss was the possibility of more than 1 optimal
solution to the mathematical problems. This means there may be more than 1 possible
reconstruction of the ancestral genome. In such a scenario, it is useful to have a method
to sample from the possible genomes. This is especially true when we are talking about
evolutionary scenarios for various genomes, as even knowing the ancestor and the descen-
dant does not necessarily mean that there is only one possible evolutionary pathway from
the ancestral genome to the extant genome. Recent studies are increasingly focussing on
these possibilities, which takes into account uncertainties in genome evolution and recon-
struction [42, 147]. As a result, we can obtain a more accurate insight into the mechanism
of genome evolution.

All these projects are tied to the production and availability of high quality ancestral
genome maps, which brings us back to the methodology used in many reconstruction stud-
ies [43, 135,170], including this dissertation. The primary advantage of the methodology is
that it is well-established, and the independence from models of evolution is a useful feature
to have if one wishes to evaluate such models. Along with alternative methods for ancestral
reconstruction which do consider well-defined models of genome rearrangement [217], one
can finally consider embarking on the projects mentioned earlier.

158

Bibliography

[1] Adam, Z., Turmel, M., Lemieux, C., and Sankoff, D. Common intervals and
symmetric difference in a model-free phylogenomics, with an application to strepto-
phyte evolution. J. Comput. Biol. 14, 4 (2007), 436–445 (electronic). Special issue on
the RECOMB Satellite Workshop on Comparative Genomics. 12

[2] Alizadeh, F., Karp, R. M., Newberg, L. A., and Weisser, D. K. Physical
mapping of chromosomes: a combinatorial problem in molecular biology. Algorithmica
13, 1-2 (1995), 52–76. 3, 8, 16, 27

[3] Alon, N., and Milman, V. D. λ1, isoperimetric inequalities for graphs, and super-
concentrators. J. Combin. Theory Ser. B 38, 1 (1985), 73–88. 96

[4] Alon, N., and Spencer, J. H. The probabilistic method, third ed. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons,
Inc., Hoboken, NJ, 2008. With an appendix on the life and work of Paul Erdős. 55

[5] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.
Basic local alignment search tool. Journal of molecular biology 215, 3 (1990), 403–410.
3, 128

[6] Arora, S., Lee, J. R., and Naor, A. Euclidean distortion and the sparsest cut
[extended abstract]. In STOC’05: Proceedings of the 37th Annual ACM Symposium
on Theory of Computing. ACM, New York, 2005, pp. 553–562. 96, 105, 110

[7] Arora, S., Rao, S., and Vazirani, U. Expander flows, geometric embeddings and
graph partitioning. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (2004), ACM, New York, pp. 222–231. 96, 110

[8] Arora, S., Rao, S., and Vazirani, U. Expander flows, geometric embeddings and
graph partitioning. J. ACM 56, 2 (2009), Art. 5, 37. 105, 106

[9] Atkins, J. E., Boman, E. G., and Hendrickson, B. A spectral algorithm for
seriation and the consecutive ones problem. SIAM J. Comput. 28, 1 (1999), 297–310.
102, 125, 154, 156

[10] Bafna, V., and Pevzner, P. A. Genome rearrangements and sorting by reversals.
SIAM J. Comput. 25, 2 (1996), 272–289. 5

[11] Banerjee, P., Sur-Kolay, S., Bishnu, A., Das, S., Nandy, S. C., and Bhat-
tacharjee, S. Fpga placement using space-filling curves: Theory meets practice.
ACM Trans. Embed. Comput. Syst. 9, 2 (Oct. 2009), 12:1–12:23. 98, 105, 155

159

[12] Bashir, A., Klammer, A., Robins, W. P., Chin, C.-S., Websetr, D., Paxinos,
E., Hsu, D., Ashby, M., et al. A hybrid approach for the automated finishing of
bacterial genomes. Nature Biotechnol 30, 7 (2012), 701–707. 10, 126

[13] Batzoglou, S., and Istrail, S. Physical mapping with repeated probes: the
hypergraph superstring problem. J. Discrete Algorithms 1, 1 (2000), 51–76. 35

[14] Belcaid, M., Bergeron, A., Chateau, A., Chauve, C., Gingras, Y., Pois-
son, G., and Vendette, M. Exploring Genome Rearrangements using Virtual Hy-
bridization. In APBC’07: 5th Asia-Pacific Bioinformatics Conference (Hong Kong,
China, Jan. 2007), David Sankoff, Lusheng Wang, Francis Chin, Ed., vol. 5 of Ad-
vances in Bioinformatics and Computational Biology, Imperial College Press 2007,
pp. 205–214. 13

[15] Benzer, S. On the topography of the genetic fine structure. Proc. Natl. Acad. Sci.
U.S.A. 47, 3 (Mar 1961), 403–415. 27, 152

[16] Berger, B., Peng, J., and Singh, M. Computational solutions for omics data.
Nature Reviews Genetics 14, 5 (2013), 333–346. 3

[17] Bergeron, A., Blanchette, M., Chateau, A., and Chauve, C. Reconstruct-
ing ancestral gene orders using conserved intervals. In Algorithms in bioinformatics,
vol. 3240 of Lecture Notes in Comput. Sci. Springer, Berlin, 2004, pp. 14–25. 12, 16

[18] Bergeron, A., Chauve, C., de Montgolfier, F., and Raffinot, M. Comput-
ing common intervals of K permutations, with applications to modular decomposition
of graphs. SIAM J. Discrete Math. 22, 3 (2008), 1022–1039. 3, 14, 124

[19] Bergeron, A., Mixtacki, J., and Stoye, J. A unifying view of genome rear-
rangements. In Algorithms in bioinformatics, vol. 4175 of Lecture Notes in Comput.
Sci. Springer, Berlin, 2006, pp. 163–173. 3, 5, 12

[20] Biller, P., Feijão, P., and Meidanis, J. a. Rearrangement-based phylogeny us-
ing the single-cut-or-join operation. IEEE/ACM Trans. Comput. Biol. Bioinformatics
10, 1 (Jan. 2013), 122–134. 3, 144

[21] Blanchette, M., Kunisawa, T., and Sankoff, D. Gene order breakpoint evi-
dence in animal mitochondrial phylogeny. Journal of Molecular Evolution 49, 2 (1999),
193–203. 6, 11

[22] Blum, A., Konjevod, G., Ravi, R., and Vempala, S. Semi-definite relaxations
for minimum bandwidth and other vertex-ordering problems. In STOC ’98 (Dallas,
TX). ACM, New York, 1999, pp. 100–105. 96

[23] Bodlaender, H. L., Fomin, F. V., Koster, A. M. C. A., Kratsch, D., and
Thilikos, D. M. A note on exact algorithms for vertex ordering problems on graphs.
Theory Comput. Syst. 50, 3 (2012), 420–432. 95, 96, 156

[24] Booth, K. S., and Lueker, G. S. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13,
3 (1976), 335–379. Working Papers presented at the ACM-SIGACT Symposium on
the Theory of Computing (Albuquerque, N. M., 1975). 35, 50

160

[25] Bos, K. I., Schuenemann, V. J., Golding, G. B., Burbano, H. A., Wa-
glechner, N., Coombes, B. K., McPhee, J. B., DeWitte, S. N., Meyer, M.,
Schmedes, S., et al. A draft genome of Yersinia pestis from victims of the Black
Death. Nature 478, 7370 (2011), 506–510. 10, 125, 126, 127, 132, 133, 136

[26] Bourque, G., Pevzner, P. A., and Tesler, G. Reconstructing the genomic
architecture of ancestral mammals: Lessons from human, mouse, and rat genomes.
Genome Research 14, 4 (2004), 507–516. 11

[27] Braga, M. D. V., Willing, E., and Stoye, J. Double cut and join with insertions
and deletions. J. Comput. Biol. 18, 9 (2011), 1167–1184. 11

[28] Bryant, D., and Tupper, P. F. Hyperconvexity and tight-span theory for diver-
sities. Adv. Math. 231, 6 (2012), 3172–3198. 120

[29] Bryant, D., and Tupper, P. F. Diversities and the geometry of hypergraphs.
Discrete Math. Theor. Comput. Sci. 16, 2 (2014), 1–20. 120

[30] Cahill, M. J., Köser, C. U., Ross, N. E., and Archer, J. A. C. Read length
and repeat resolution: Exploring prokaryote genomes using next-generation sequenc-
ing technologies. PLoS ONE 5, 7 (07 2010), e11518. 31

[31] Caprara, A. The reversal median problem. INFORMS J. Comput. 15, 1 (2003),
93–113. 11

[32] Chain, P., Carniel, E., Larimer, F., Lamerdin, J., Stoutland, P., et al.
Insights into the evolution of Yersinia pestis through whole-genome comparison with
Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 38 (2004), 13826–13831.
4, 137, 154

[33] Chapman, J., et al. Meraculous: De novo genome assembly with short paired-end
reads. PLoS One 6 (2011), e23501. 10, 126

[34] Charikar, M., Hajiaghayi, M. T., Karloff, H., and Rao, S. `22 spreading
metrics for vertex ordering problems (extended abstract). In Proceedings of the Sev-
enteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2006), ACM, New
York, pp. 1018–1027. 95, 96, 105, 109, 110, 113, 116, 120, 153

[35] Charikar, M., Hajiaghayi, M. T., Karloff, H., and Rao, S. `22 spreading
metrics for vertex ordering problems. Algorithmica 56, 4 (2010), 577–604. 96

[36] Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., and Tannier, E.
Duplication, rearrangement and reconciliation: a follow-up 13 years later. In Models
and Algorithms for Genome Evolution. Springer, 2013, pp. 47–62. 11

[37] Chauve, C., El-Mabrouk, N., and Tannier, E. Models and Algorithms for
Genome Evolution. Springer Publishing Company, Incorporated, 2013. 3

[38] Chauve, C., Gavranovic, H., Ouangraoua, A., and Tannier, E. Yeast an-
cestral genome reconstructions: the possibilities of computational methods II. J.
Comput. Biol. 17 (2010), 1097–1112. 12, 13, 16, 123, 130, 142

161

[39] Chauve, C., Maňuch, J., and Patterson, M. On the gapped consecutive-ones
property. In European Conference on Combinatorics, Graph Theory and Applica-
tions (EuroComb 2009), vol. 34 of Electron. Notes Discrete Math. Elsevier Sci. B. V.,
Amsterdam, 2009, pp. 121–125. 94

[40] Chauve, C., Maňuch, J., Patterson, M., and Wittler, R. Tractability results
for the consecutive-ones property with multiplicity. In Combinatorial Pattern Match-
ing, vol. 6661 of Lecture Notes in Comput. Sci. Springer, Heidelberg, 2011, pp. 90–103.
36

[41] Chauve, C., Patterson, M., and Rajaraman, A. Hypergraph covering problems
motivated by genome assembly questions. In Combinatorial Algorithms - 24th Inter-
national Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, Revised Selected
Papers (2013), pp. 428–432. 41, 57

[42] Chauve, C., Ponty, Y., and Zanetti, J. P. P. Evolution of genes neighborhood
within reconciled phylogenies: An ensemble approach. In Advances in Bioinformatics
and Computational Biology, S. Campos, Ed., vol. 8826 of Lecture Notes in Comput.
Sci. Springer International Publishing, 2014, pp. 49–56. 14, 158

[43] Chauve, C., and Tannier, E. Amethodological framework for the reconstruction of
contiguous regions of ancestral genomes and its applications to mammalian genomes.
PLoS Comput. Biol. 4 (2008), e1000234. 8, 12, 13, 14, 16, 92, 123, 127, 130, 158

[44] Cheeger, J. A lower bound for the smallest eigenvalue of the Laplacian. In Problems
in analysis (Papers dedicated to Salomon Bochner, 1969). Princeton Univ. Press,
Princeton, N. J., 1970, pp. 195–199. 96

[45] Chekuri, C., and Khanna, S. On multidimensional packing problems. SIAM J.
Comput. 33, 4 (2004), 837–851. 89

[46] Chen, Y. P., and Chen, F. Using bioinformatics techniques for gene identification
in drug discovery and development. Curr. Drug Metab. 9, 6 (Jul 2008), 567–573. 2

[47] Chial, H., and Craig, J. mtDNA and mitochondrial diseases. Nature Education
1, 1 (2008), 217. 5

[48] Christof, T., Jünger, M., Kececioglu, J., Mutzel, P., and Reinelt, G. A
branch-and-cut approach to physical mapping of chromosomes by unique end-probes.
J. Comput. Biol. 4, 4 (1997), 433–447. 16

[49] Chung, F. R. K. On optimal linear arrangements of trees. Comput. Math. Appl.
10, 1 (1984), 43–60. 100

[50] Courcelle, B. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inform. and Comput. 85, 1 (1990), 12–75. 96

[51] Cristianini, N., and Hahn, M. W. Introduction to computational genomics: a
case studies approach. Cambridge University Press, 2006. 3

[52] Csurös, M. Count: evolutionary analysis of phylogenetic profiles with parsimony
and likelihood. Bioinformatics 26 (2010), 1910–1912. 13, 130, 146, 150

162

[53] Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., and Schlotter, I.
Parameterized complexity of Eulerian deletion problems. Algorithmica 68, 1 (2014),
41–61. 89

[54] Darling, A. E., Miklós, I., and Ragan, M. A. Dynamics of genome rearrange-
ment in bacterial populations. PLoS Genet 4, 7 (2008), e1000128. 127, 137

[55] Deng, W., Burland, V., Plunkett, G., Boutin, A., Mayhew, G. F., Liss,
P., Perna, N. T., Rose, D. J., et al. Genome sequence of Yersinia pestis KIM
. J Bacteriol 184, 16 (Aug 2002), 4601–4611. 137, 154

[56] Denoeud, F., Carretero-Paulet, L., Dereeper, A., et al. The coffee genome
provides insight into the convergent evolution of caffeine biosynthesis. Science 345,
6201 (2014), 1181–1184. 11

[57] Deshpande, V., Fung, E. D. K., Pham, S., and Bafna, V. Cerulean: A hybrid
assembly using high throughput short and long reads. In WABI (2013), vol. 8126 of
Lecture Notes in Computer Science, Springer, pp. 349–363. 9

[58] Dessmark, A., Lingas, A., and Garrido, O. On parallel complexity of maximum
f -matching and the degree sequence problem. In Mathematical foundations of com-
puter science 1994 (Košice, 1994), vol. 841 of Lecture Notes in Comput. Sci. Springer,
Berlin, 1994, pp. 316–325. 39, 55, 68

[59] Devanur, N. R., Khot, S. A., Saket, R., and Vishnoi, N. K. Integrality gaps
for sparsest cut and minimum linear arrangement problems. In STOC’06: Proceedings
of the 38th Annual ACM Symposium on Theory of Computing. ACM, New York, 2006,
pp. 537–546. 96, 104

[60] Diallo, A. B., Makarenkov, V., and Blanchette, M. Ancestors 1.0: a web
server for ancestral sequence reconstruction. Bioinformatics 26, 1 (2010), 130–131.
13

[61] Distelfeld, A., Uauy, C., Fahima, T., and Dubcovsky, J. Physical map of the
wheat high-grain protein content gene gpc-b1 and development of a high-throughput
molecular marker. New Phytologist 169, 4 (2006), 753–763. 8

[62] Djelouadji, Z., Raoult, D., and Drancourt, M. Palaegenomics of Mycobac-
terium tuberculosis: epidemic burst with a degrading genome. Lancet Infect Dis 11
(2011), 641–650. 10

[63] Dobzhansky, T., et al. Genetics of the evolutionary process, vol. 139. Columbia
University Press New York, 1970. 4

[64] Dom, M. Algorithmic aspects of the consecutive-ones property. Bull. Eur. Assoc.
Theor. Comput. Sci. EATCS, 98 (2009), 27–59. 37

[65] Dom, M., Guo, J., and Niedermeier, R. Approximation and fixed-parameter
algorithms for consecutive ones submatrix problems. J. Comput. System Sci. 76, 3-4
(2010), 204–221. 38, 57

163

[66] Donmez, N., and Brudno, M. Scarpa: scaffolding reads with practical algorithms.
Bioinformatics 29, 4 (2013), 428–434. 10, 126

[67] Donoghue, H. Insights gained from paleomicrobiology into ancient and modern
tuberculosis. Clin Microbiol Infect 17 (2011), 821–829. 10, 126

[68] Donoghue, H., and Spigelman, M. Pathogenic microbial ancient dna: a problem
or an opportunity. Proc R Soc B 273, 1587 (2006), 641–642. 126

[69] Downey, R., and Fellows, M. Fixed-parameter tractability and completeness.
III. Some structural aspects of the W hierarchy. In Complexity theory. Cambridge
Univ. Press, Cambridge, 1993, pp. 191–225. 180

[70] Downey, R. G., and Fellows, M. R. Fixed-parameter tractability and complete-
ness. I. Basic results. SIAM J. Comput. 24, 4 (1995), 873–921. 180, 181

[71] Downey, R. G., and Fellows, M. R. Fixed-parameter tractability and complete-
ness. II. On completeness for W [1]. Theoret. Comput. Sci. 141, 1-2 (1995), 109–131.
180, 181

[72] Drancourt, M., and Raoult, D. Palaemicrobiology: current issues and perspec-
tives. Nature Rev Microbiol 3 (2005), 23–35. 126, 127

[73] Earnest-DeYoung, J. V., Lerat, E., and Moret, B. M. Reversing gene erosion
âĂŞ reconstructing ancestral bacterial genomes from gene-content and order data. In
Algorithms in Bioinformatics, I. Jonassen and J. Kim, Eds., vol. 3240 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004, pp. 1–13. 11

[74] Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res. 32, 5 (2004), 1792–1797. 134

[75] El-Mabrouk, N. Reconstructing an ancestral genome using minimum segments
duplications and reversals. J. Comput. Syst. Sci. 65, 3 (2002), 442–464. 11

[76] Even, G., Naor, J., Rao, S., and Schieber, B. Divide-and-conquer approxima-
tion algorithms via spreading metrics. J. ACM 47, 4 (2000), 585–616. 95, 105, 108,
109, 110

[77] Feige, U. Approximating the bandwidth via volume respecting embeddings. J.
Comput. System Sci. 60, 3 (2000), 510–539. 30th Annual ACM Symposium on Theory
of Computing (Dallas, TX, 1998). 96, 120

[78] Feige, U., and Lee, J. R. An improved approximation ratio for the minimum
linear arrangement problem. Inform. Process. Lett. 101, 1 (2007), 26–29. 95, 96, 105,
109, 110, 120, 153

[79] Feijão, P., and Meidanis, J. a. SCJ: A breakpoint-like distance that simplifies
several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinformatics
8, 5 (Sept. 2011), 1318–1329. 5, 10, 11, 143

164

[80] Fellows, M. R., Lokshtanov, D., Misra, N., Rosamond, F. A., and
Saurabh, S. Graph layout problems parameterized by vertex cover. In Algorithms
and computation, vol. 5369 of Lecture Notes in Comput. Sci. Springer, Berlin, 2008,
pp. 294–305. 97, 101, 156

[81] Felsenstein, J., and Felenstein, J. Inferring phylogenies, vol. 2. Sinauer Asso-
ciates Sunderland, 2004. 123

[82] Fertin, G., Labarre, A., Rusu, I., Tannier, É., and Vialette, S. Combi-
natorics of genome rearrangements. Computational Molecular Biology. MIT Press,
Cambridge, MA, 2009. 6, 10, 11, 21

[83] Fitch, W. M. Toward defining the course of evolution: Minimum change for a
specific tree topology. Systematic Biology 20, 4 (1971), 406–416. 132, 134

[84] Fleischner, H. Eulerian graphs and related topics. Part 1. Vol. 2, vol. 50 of Annals
of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1991. 50

[85] Fontaine, M. C., et al. Extensive introgression in a malaria vector species complex
revealed by phylogenomics. Science 347, 6217 (2015). 141

[86] Fréville, A., and Plateau, G. Sac à dos multidimensionnel en variables 0-1:
encadrement de la somme des variables à l’optimum. RAIRO Rech. Opér. 27, 2
(1993), 169–187. 83

[87] Fulkerson, D. R., and Gross, O. A. Incidence matrices and interval graphs.
Pacific J. Math. 15 (1965), 835–855. 16, 35, 152

[88] Gagnon, Y., Blanchette, M., and El-Mabrouk, N. A flexible ancestral genome
reconstruction method based on gapped adjacencies. BMC Bioinformatics 13 Suppl
19 (2012), S4. 11, 127

[89] Gao, S., Sung, W.-K., and Nagarajan, N. Opera: Reconstructing optimal ge-
nomic scaffolds with high-throughput paired-end sequences. Journal of Computational
Biology 18, 11 (2011), 1681–1691. 10, 126

[90] Garey, M. R., Graham, R. L., Johnson, D. S., and Knuth, D. E. Complexity
results for bandwidth minimization. SIAM J. Appl. Math. 34, 3 (1978), 477–495. 95

[91] Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some simplified NP -
complete problems. In Sixth Annual ACM Symposium on Theory of Computing (Seat-
tle, Wash., 1974). Assoc. Comput. Mach., New York, 1974, pp. 47–63. 95

[92] Gärtner, B., and Matoušek, J. Approximation algorithms and semidefinite pro-
gramming. Springer, Heidelberg, 2012. 184

[93] Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M.,
Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. Bioconductor:
open software development for computational biology and bioinformatics. Genome
biology 5, 10 (2004), R80. 2

165

[94] Gnerre, S., Lander, E. S., Lindblad-Toh, K., and Jaffe, D. B. Assisted as-
sembly: how to improve a de novo genome assembly by using related species. Genome
Biol 10 (2009), R88. 9, 10, 126

[95] Goemans, M. X., and Williamson, D. P. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. Assoc.
Comput. Mach. 42, 6 (1995), 1115–1145. 184

[96] Goldberg, M. A., and Klipker, I. A. Minimal placing of trees on a line. Techni-
cal report Physico-Technical Institute of Low Temperatures, Academy of Sciences of
Ukranian SSR, USSR (in Russian) (1976). 95, 100

[97] Goldberg, P. W., Golumbic, M. C., Kaplan, H., and Shamir, R. Four strikes
against physical mapping of DNA. Journal of Computational Biology 2, 1 (1995),
139–152. 27, 94

[98] Grötschel, M., Lovász, L., and Schrijver, A. Geometric algorithms and com-
binatorial optimization, second ed., vol. 2 of Algorithms and Combinatorics. Springer-
Verlag, Berlin, 1993. 108, 110, 111, 183, 184

[99] Habib, M., McConnell, R., Paul, C., and Viennot, L. Lex-BFS and partition
refinement, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoret. Comput. Sci. 234, 1-2 (2000), 59–84. 35

[100] Haddadi, S. A note on the NP-hardness of the consecutive block minimization
problem. Int. Trans. Oper. Res. 9, 6 (2002), 775–777. 94

[101] Haensch, S., Bianucci, R., Signoli, M., Rajerison, M., Schultz, M., et al.
Distinct clones of yersinia pestis caused the Black Death. PLoS Pathog 6, 10 (10
2010), e1001134. 133

[102] Han, M. V., Thomas, G. W., Lugo-Martinez, J., and Hahn, M. W. Estimating
gene gain and loss rates in the presence of error in genome assembly and annotation
using cafe 3. Molecular Biology and Evolution 30, 8 (2013), 1987–1997. 150

[103] Handl, J., Knowles, J., and Kell, D. B. Computational cluster validation in
post-genomic data analysis. Bioinformatics 21, 15 (2005), 3201–3212. 3

[104] Helmberg, C., Rendl, F., Mohar, B., and Poljak, S. A spectral approach to
bandwidth and separator problems in graphs. Linear and Multilinear Algebra 39, 1-2
(1995), 73–90. 96

[105] Hilker, R., Sickinger, C., Pedersen, C. N., and Stoye, J. UniMoG- a unifying
framework for genomic distance calculation and sorting based on DCJ. Bioinformatics
28, 19 (2012), 2509–2511. 142

[106] Husemann, P., and Stoye, J. r2cat: synteny plots and comparative assembly.
Bioinformatics 26, 4 (2010), 570–571. 10, 127

[107] Huson, D. H., Reinert, K., and Myers, E. W. The greedy path-merging algo-
rithm for contig scaffolding. J. ACM 49 (2002), 603–615. 10

166

[108] Idury, R. M., and Waterman, W. S. A new algorithm for DNA sequence assembly.
J. Comput. Biol. 2 (1995), 291–306. 9

[109] Jahn, K., Zheng, C., Kováč, J., and Sankoff, D. A consolidation algorithm
for genomes fractionated after higher order polyploidization. BMC Bioinformatics 13
Suppl 19 (2012), S8. 11

[110] Jones, B. R., Rajaraman, A., Tannier, E., and Chauve, C. ANGES: recon-
structing ANcestral GEnomeS maps. Bioinformatics 28, 18 (2012), 2388–2390. 3, 8,
13, 122, 127, 154

[111] Juvan, M., and Mohar, B. Optimal linear labelings and eigenvalues of graphs.
Discrete Appl. Math. 36, 2 (1992), 153–168. 96

[112] Kaplan, H., Shamir, R., and Tarjan, R. E. Tractability of parameterized com-
pletion problems on chordal, strongly chordal, and proper interval graphs. SIAM J.
Comput. 28, 5 (1999), 1906–1922. 94

[113] Karp, R. M. Reducibility among combinatorial problems. In Complexity of com-
puter computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown
Heights, N.Y., 1972). Plenum, New York, 1972, pp. 85–103. 59

[114] Katona, G. Y. Extension of paths and cycles for hypergraphs. Electronic Notes in
Discrete Mathematics 45, 0 (2014), 3–7. 99

[115] Katona, G. Y., and Kierstead, H. A. Hamiltonian chains in hypergraphs. J.
Graph Theory 30, 3 (1999), 205–212. 99

[116] Kececioglu, J. D., and Myers, E. W. Combinatorial algorithms for DNA se-
quence assembly. Algorithmica 13 (1995), 7–51. 9

[117] Khot, S. On the power of unique 2-prover 1-round games. In Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing (2002), ACM, New
York, pp. 767–775. 184

[118] Kim, J., Larkin, D., Cai, Q., Asan, Zhang, Y., Auvil, L., Capitanu, B.,
Zhang, G., Lewin, H., and Ma, J. Reference-assisted chromosome assembly. Proc
Natl Acad Sci 110, 5 (2013), 1785–1790. 10, 126, 158

[119] Kohara, Y., Akiyama, K., and Isono, K. The physical map of the whole E. coli
chromosome: application of a new strategy for rapid analysis and sorting of a large
genomic library. Cell 50, 3 (Jul 1987), 495–508. 8

[120] Kolmogorov, M., Raney, B., Paten, B., and Pham, S. RagoutâĂŤa reference-
assisted assembly tool for bacterial genomes. Bioinformatics 30, 12 (2014), i302–i309.
158

[121] Koren, S., et al. Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nat. Biotechnol. 30 (2012), 693–700. 9

[122] Kou, L. T. Polynomial complete consecutive information retrieval problems. SIAM
J. Comput. 6, 1 (1977), 67–75. 94

167

[123] Krop, E. Enumerating matchings in regular graphs. ProQuest LLC, Ann Arbor, MI,
2007. Thesis (Ph.D.)–University of Illinois at Chicago. 55

[124] Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Hors-
man, D., Jones, S. J., and Marra, M. A. Circos: an information aesthetic for
comparative genomics. Genome Res. 19, 9 (Sep 2009), 1639–1645. 135

[125] Li, R., Fan, W., Tian, G., Zhu, H., He, L., Cai, J., Huang, Q., Cai, Q., Li,
B., Bai, Y., et al. The sequence and de novo assembly of the giant panda genome.
Nature 463, 7279 (Jan 2010), 311–317. 9

[126] Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan,
G., Kristiansen, K., Li, S., Yang, H., Wang, J., and Wang, J. De novo
assembly of human genomes with massively parallel short read sequencing. Genome
Research 20, 2 (2010), 265–272. 3, 9

[127] Lin, H., Goldstein, S., Mendelowitz, L., Zhou, S., Wetzel, J., Schwartz,
D., and Pop, M. AGORA: Assembly guided by optical restriction alignment. BMC
Bioinformatics 13 (2012), 189. 10, 126

[128] Lin, Y., Nurk, S., and Pevzner, P. A. What is the difference between the
breakpoint graph and the de bruijn graph? BMC Genomics 15, Suppl 6 (2014), S6.
157

[129] Louis, A. Hypergraph markov operators, eigenvalues and approximation algorithms.
CoRR abs/1408.2425 (2014). 105, 155

[130] Louis, A., and Makarychev, Y. Approximation algorithms for hypergraph small
set expansion and small set vertex expansion. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014,
September 4-6, 2014, Barcelona, Spain (2014), pp. 339–355. 105, 155

[131] Louis, A., Muffato, M., and Roest Crollius, H. Genomicus: five genome
browsers for comparative genomics in eukaryota. Nucleic Acids Research 41, D1
(2013), D700–D705. 157

[132] Louis, A., Nguyen, N. T. T., Muffato, M., and Roest Crollius, H. Genomi-
cus update 2015: Karyoview and matrixview provide a genome-wide perspective to
multispecies comparative genomics. Nucleic Acids Research (2014). 157

[133] Lu, W. F., and Hsu, W. L. A test for the consecutive ones property on noisy
data–application to physical mapping and sequence assembly. J. Comput. Biol. 10, 5
(2003), 709–735. 16, 27

[134] Ma, J., Ratan, A., Raney, B. J., Suh, B. B., Zhang, L., Miller, W., and
Haussler, D. DUPCAR: reconstructing contiguous ancestral regions with duplica-
tions. J. Comput. Biol. 15, 8 (Oct 2008), 1007–1027. 127, 131

[135] Ma, J., Zhang, L., Suh, B. B., Raney, B. J., Burhans, R. C., Kent, W. J.,
Blanchette, M., Haussler, D., and Miller, W. Reconstructing contiguous
regions of an ancestral genome. Genome Res. 16, 12 (Dec 2006), 1557–1565. 11, 12,
13, 14, 124, 127, 130, 136, 158

168

[136] Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., and Sejnowski, T. J.
Blind separation of auditory event-related brain responses into independentâĂĽcom-
ponents. Proceedings of the National Academy of Sciences 94, 20 (1997), 10979–10984.
3

[137] Maňuch, J., Patterson, M., and Chauve, C. Hardness results on the gapped
consecutive-ones property problem. Discrete Appl. Math. 160, 18 (2012), 2760–2768.
94

[138] Maňuch, J., Patterson, M., Wittler, R., Chauve, C., and Tannier, E.
Linearization of ancestral multichromosomal genomes. BMC Bioinformatics 13, S-19
(2012), S11. 38, 39, 57, 68, 125, 131, 146, 148, 152, 155

[139] Mardis, E. R. The impact of next-generation sequencing technology on genetics.
Trends in Genetics 24, 3 (2008), 133–141. 2

[140] Martin, M. D., Cappellini, E., Samaniego, J. A., Zepeda, M. L., Campos,
P. F., Seguin-Orlando, A., et al. Reconstructing genome evolution in historic
samples of the Irish potato famine pathogen. Nat Commun 4 (2013), 2172. 126

[141] Marx, D., and Cao, Y. Interval deletion is fixed-parameter tractable. In Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(2014), pp. 122–141. 38

[142] McConnell, R. M. A certifying algorithm for the consecutive-ones property. In
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(2004), ACM, New York, pp. 768–777 (electronic). 35, 124, 125, 154

[143] McCoy, R. C., Taylor, R. W., Blauwkamp, T. A., Kelley, J. L., Kertesz,
M., Pushkarev, D., Petrov, D. A., and Fiston-Lavier, A.-S. Illumina truseq
synthetic long-reads empower de novo assembly and resolve complex, highly repetitive
transposable elements. bioRxiv 001834 (2014). 9

[144] McPherson, J. D., Marra, M., Hillier, L., Waterston, R. H., Chinwalla,
A., Wallis, J., Sekhon, M., Wylie, K., Mardis, E. R., Wilson, R. K., et al.
A physical map of the human genome. Nature 409, 6822 (2001), 934–941. 8

[145] Medvedev, P., Georgiou, K., Myers, E. W., and Brudno, M. Computability
of models for sequence assembly. In WABI (2007), vol. 4645 of Lecture Notes in
Comput. Sci., pp. 289–301. 3, 9

[146] Micali, S. M., and Vazirani, V. V. An O(
√
|V ||E|) algorithm for finding max-

imum matching in general graphs. In 21st Annual Symposium on Foundations of
Computer Science, Syracuse, New York, USA, 13-15 October 1980 (1980), pp. 17–27.
39, 68

[147] Miklós, I., Kiss, S. Z., and Tannier, E. Counting and sampling SCJ small
parsimony solutions. Theoret. Comput. Sci. 552 (2014), 83–98. 158

[148] Miklós, I., and Tannier, E. Bayesian sampling of genomic rearrangement scenarios
via double cut and join. Bioinformatics 26, 24 (2010), 3012–3019. 137

169

[149] Monien, B. The bandwidth minimization problem for caterpillars with hair length
3 is NP-complete. SIAM J. Algebraic Discrete Methods 7, 4 (1986), 505–512. 95, 100,
101

[150] Morelli, G., Song, Y., Mazzoni, C. J., Eppinger, M., Roumagnac, P., Wag-
ner, D. M., Feldkamp, M., Kusecek, B., Vogler, A. J., Li, Y., Cui, Y.,
Thomson, N. R., Jombart, T., Leblois, R., Lichtner, P., Rahalison, L.,
Petersen, J. M., Balloux, F., Keim, P., Wirth, T., Ravel, J., Yang, R.,
Carniel, E., and Achtman, M. Yersinia pestis genome sequencing identifies pat-
terns of global phylogenetic diversity. Nat. Genet. 42, 12 (Dec 2010), 1140–1143. 12,
133

[151] Muffato, M., and Crollius, H. R. Paleogenomics in vertebrates, or the recovery
of lost genomes from the mist of time. BioEssays 30, 2 (2008), 122–134. 4

[152] Muffato, M., Louis, A., Poisnel, C. E., and Roest Crollius, H. Genomicus:
a database and a browser to study gene synteny in modern and ancestral genomes.
Bioinformatics 26, 8 (Apr 2010), 1119–1121. 12, 157

[153] Müller, A. C., Bruggeman, F. J., Olivier, B. G., and Stougie, L. Fast
flux module detection using matroid theory. In Research in Computational Molecular
Biology, R. Sharan, Ed., vol. 8394 of Lecture Notes in Computer Science. Springer
International Publishing, 2014, pp. 192–206. 3

[154] Munoz, A., Zheng, C., Zhu, Q., Albert, V. A., Rounsley, S., and Sankoff,
D. Scaffold filling, contig fusion and comparative gene order inference. BMC Bioin-
formatics 11 (2010), 304. 127

[155] Murat, F., Xu, J., Tannier, E., Abrouk, M., Guilhot, N., Pont, C., Mess-
ing, J., and Salse, J. Ancestral grass karyotype reconstruction unravels new mech-
anisms of genome shuffling as a source of plant evolution. Genome Research 20, 11
(2010), 1545–1557. 12

[156] Murat, F., Zhang, R., Guizard, S., Flores, R., Armero, A., Pont, C.,
Steinbach, D., Quesneville, H., Cooke, R., and Salse, J. Shared subgenome
dominance following polyploidization explains grass genome evolutionary plasticity
from a seven protochromosome ancestor with 16k protogenes. Genome Biology and
Evolution 6, 1 (2014), 12–33. 125

[157] Myers, E. W. Toward simplifying and accurately formulating fragment assembly.
J. Comput. Biol. 2 (1995), 275–290. 9

[158] Myers, E. W. The fragment assembly string graph. Bioinformatics 21, suppl 2
(2005), ii79–ii85. 9

[159] Nagarajan, N., and Pop, M. Parametric complexity of sequence assembly: theory
and applications to next generation sequencing. J. Comput. Biol. 16, 7 (Jul 2009),
897–908. 9

[160] Nagarajan, N., and Pop, M. Sequence assembly demystified. Nature Reviews
Genetics 14 (2013), 157–167. 9

170

[161] Narayanaswamy, N. S., and Subhasini, R. FPT algorithms for consecutive ones
submatrix problems. In Parameterized and Exact Computation, G. Gutin and S. Szei-
der, Eds., vol. 8246 of Lecture Notes in Comput. Sci. Springer International Publish-
ing, 2013, pp. 295–307. 38

[162] National Institutes of Health. Talking Glossary of Genetic Terms., 2006. 5

[163] Neafsey, D. E., Christophides, G. K., Collins, F. H., Emrich, S. J.,
Fontaine, M. C., Gelbart, W., et al. The evolution of the Anopheles 16 genomes
project. G3 (Bethesda) 3, 7 (Jul 2013), 1191–1194. 139, 140, 141

[164] Neafsey, D. E., et al. Highly evolvable malaria vectors: The genomes of 16
anopheles mosquitoes. Science 347, 6217 (2015). 12, 125, 139, 140, 143, 144, 145,
154, 158

[165] Niedermeier, R. Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.
55, 56

[166] Noble, D. The rise of computational biology. Nature Reviews Molecular Cell Biology
3, 6 (2002), 459–463. 2

[167] Olson, M., Hood, L., Cantor, C., and Botstein, D. A common language for
physical mapping of the human genome. Science 245, 4925 (Sep 1989), 1434–1435. 7

[168] Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A.,
Stiller, M., Schubert, M., et al. Recalibrating Equus evolution using the
genome sequence of an early Middle Pleistocene horse. Nature 499, 7456 (Jul 2013),
74–78. 126

[169] Otero, P., Hersh, W., and Jai Ganesh, A. U. Big Data: Are Biomedical and
Health Informatics Training Programs Ready? Contribution of the IMIA Working
Group for Health and Medical Informatics Education. Yearb Med Inform 9, 1 (2014),
177–181. 2

[170] Ouangraoua, A., Tannier, E., and Chauve, C. Reconstructing the architecture
of the ancestral amniote genome. Bioinformatics 27, 19 (Oct 2011), 2664–2671. 10,
13, 16, 92, 94, 158

[171] Papadimitriou, C. H. The NP-completeness of the bandwidth minimization prob-
lem. Computing 16, 3 (1976), 263–270. 95

[172] Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J. M., and
Brown, C. T. Scaling metagenome sequence assembly with probabilistic de bruijn
graphs. Proceedings of the National Academy of Sciences 109, 33 (2012), 13272–13277.
138

[173] Pevzner, P. A., Tang, H., and Waterman, M. S. An eulerian path approach
to dna fragment assembly. Proceedings of the National Academy of Sciences 98, 17
(2001), 9748–9753. 9

171

[174] Pop, M. Genome assembly reborn: recent computational challenges. Briefings in
Bioinformatics 10, 4 (2009), 354–366. 9

[175] Raffinot, M. Consecutive ones property testing: cut or swap. In Models of com-
putation in context, vol. 6735 of Lecture Notes in Comput. Sci. Springer, Heidelberg,
2011, pp. 239–249. 35

[176] Raghavendra, P. Optimal algorithms and inapproximability results for every CSP?
[extended abstract]. In STOC’08. ACM, New York, 2008, pp. 245–254. 184

[177] Rajaraman, A., Tannier, E., and Chauve, C. Fpsac: fast phylogenetic scaffold-
ing of ancient contigs. Bioinformatics 29, 23 (2013), 2987–2994. 12, 13, 42, 59, 125,
132, 158

[178] Rao, S., and Richa, A. W. New approximation techniques for some linear ordering
problems. SIAM J. Comput. 34, 2 (2004/05), 388–404 (electronic). 95, 105, 107, 108,
110

[179] Renegar, J. A mathematical view of interior-point methods in convex optimization.
MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia,
PA, 2001. 184

[180] Ribeiro, F. J., Przybylski, D., Yin, S., et al. Finished bacterial genomes from
shotgun sequence data. Genome Res 22 (2012), 2270–2277. 10, 126

[181] Rissman, A. I., Mau, B., Biehl, B. S., Darling, A. E., Glasner, J. D.,
and Perna, N. T. Reordering contigs of draft genomes using the mauve aligner.
Bioinformatics 25, 16 (2009), 2071–2073. 127

[182] Rodríguez, J. A. On the Laplacian eigenvalues and metric parameters of hyper-
graphs. Linear Multilinear Algebra 50, 1 (2002), 1–14. 97

[183] Salmela, L., et al. Fast scaffolding with small independent mixed integer programs.
Bioinformatics 27 (2011), 3259–3265. 10, 126

[184] Sankoff, D. Genome rearrangement with gene families. Bioinformatics 15, 11
(1999), 909–917. 3, 6, 11

[185] Sankoff, D., and Zheng, C. Fractionation, rearrangement, consolidation, recon-
struction. In Models and Algorithms for Genome Evolution. Springer, 2013, pp. 247–
260. 11, 39

[186] Saxe, J. B. Dynamic-programming algorithms for recognizing small-bandwidth
graphs in polynomial time. SIAM J. Algebraic Discrete Methods 1, 4 (1980), 363–369.
94

[187] Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L., and Nolan, G. P.
Computational solutions to large-scale data management and analysis. Nature Re-
views Genetics 11, 9 (2010), 647–657. 2

172

[188] Schmidt, T., and Stoye, J. Quadratic time algorithms for finding common in-
tervals in two and more sequences. In Combinatorial Pattern Matching, 15th Annual
Symposium, CPM 2004, Istanbul,Turkey, July 5-7, 2004, Proceedings (2004), pp. 347–
358. 14, 124

[189] Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz,
C., Smith, L. M., Cao, J., Fitz, J., Warthmann, N., Henz, S. R., Huson,
D. H., and Weigel, D. Reference-guided assembly of four diverse arabidopsis
thaliana genomes. Proceedings of the National Academy of Sciences 108, 25 (2011),
10249–10254. 9

[190] Schuenemann, V. J., Bos, K., DeWitte, S., Schmedesd, S., et al. Targeted
enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from
victims of the black death. Proc Natl Acad Sci U S A 108 (2011), E746–E752. 126

[191] Schuenemann, V. J., Singh, P., Mendum, T. A., Krause-Kyora, B., Jäger,
G., Bos, K. I., Herbig, A., Economou, C., Benjak, A., Busso, P., et al.
Genome-wide comparison of medieval and modern mycobacterium leprae. Science
341, 6142 (2013), 179–183. 126

[192] Schuster, S. C. Next-generation sequencing transforms todayâĂŹs biology. Nature
200, 8 (2007). 2

[193] Schuster, S. C. Next-generation sequencing transforms today’s biology. Nat. Meth-
ods 5, 1 (Jan 2008), 16–18. 9

[194] Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P.,
et al. Large-scale copy number polymorphism in the human genome. Science 305,
5683 (2004), 525–528. 4

[195] Shiloach, Y. A minimum linear arrangement algorithm for undirected trees. SIAM
J. Comput. 8, 1 (1979), 15–32. 100

[196] Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., and
Birol, Ä. ABySS: A parallel assembler for short read sequence data. Genome
Research 19, 6 (2009), 1117–1123. 3, 9

[197] Sipser, M. Introduction to the theory of computation. PWS Publishing Company,
1997. 180

[198] Tannier, E., Zheng, C., and Sankoff, D. Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics 10 (2009). 11, 39

[199] Tarjan, R. E., and Yannakakis, M. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs. SIAM J. Comput. 13, 3 (1984), 566–579. 99

[200] Treangen, T. J., and Salzberg, S. L. Repetitive DNA and next-generation
sequencing: computational challenges and solutions. Nature. Rev. Genet. 13 (2012),
36–46. 31

173

[201] Tucker, A. Matrix characterizations of circular-arc graphs. Pacific J. Math. 39
(1971), 535–545. 28, 35

[202] Tucker, A. A structure theorem for the consecutive 1’s property. J. Combinatorial
Theory Ser. B 12 (1972), 153–162. 38, 99

[203] Uno, T. A fast algorithm for enumerating non-bipartite maximal matchings. Re-
search Report, 2001. Dept. Math. and Comp., Tokyo Institute of Technology, Japan.
55

[204] Vandenberghe, L., and Boyd, S. Semidefinite programming. SIAM Rev. 38, 1
(1996), 49–95. 184

[205] Vuokko, N. Consecutive ones property and spectral ordering. In Proceedings of the
SIAM International Conference on Data Mining, SDM 2010, April 29 - May 1, 2010,
Columbus, Ohio, USA (2010), pp. 350–360. 103, 125, 156

[206] Waterhouse, R. M., Tegenfeldt, F., Li, J., Zdobnov, E. M., and Krivent-
seva, E. V. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs.
Nucleic Acids Res. 41, Database issue (Jan 2013), D358–365. 140

[207] Wilson, D. Insights from genomics into bacterial pathogen populations. PLoS Pathog
8 (2012), e1002874. 126

[208] Wittler, R., Maňuch, J., Patterson, M., and Stoye, J. Consistency of
sequence-based gene clusters. J. Comput. Biol. 18, 9 (2011), 1023–1039. 28, 35,
36, 42, 131, 152

[209] Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., et al.
SOAPdenovo-Trans: de novo transcriptome assembly with short rna-seq reads. Bioin-
formatics (2014). 3, 60, 152

[210] Yancopoulos, S., and Friedberg, R. Dcj path formulation for genome transfor-
mations which include insertions, deletions, and duplications. Journal of Computa-
tional Biology 16, 10 (2009), 1311–1338. 11

[211] Yang, Z., and Sankoff, D. Natural parameter values for generalized gene adja-
cency. J. Comput. Biol. 17, 9 (2010), 1113–1128. 94

[212] Yoshida, K., Schuenemann, V. J., Cano, L. M., Pais, M., Mishra, B., et al.
The rise and fall of the phytophthora infestans lineage that triggered the irish potato
famine. eLife 2 (2013). 126

[213] Yu, J., and Buckler, E. S. Genetic association mapping and genome organization
of maize. Curr. Opin. Biotechnol. 17, 2 (Apr 2006), 155–160. 4

[214] Zerbino, D. R., and Birney, E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 18, 5 (May 2008), 821–829. 3, 9, 60, 132, 137,
152

174

[215] Zhang, P., Schon, E. A., Fischer, S. G., Cayanis, E., Weiss, J., Kistler,
S., and Bourne, P. E. An algorithm based on graph theory for the assembly of
contigs in physical mapping of DNA. Computer Applications in the Biosciences 10, 3
(1994), 309–317. 94

[216] Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. A greedy algorithm for
aligning DNA sequences. J. Comput. Biol. 7, 1-2 (2000), 203–214. 133

[217] Zheng, C., and Sankoff, D. Gene order in rosid phylogeny, inferred from pairwise
syntenies among extant genomes. BMC Bioinformatics 13 Suppl 10 (2012), S9. 6,
11, 12, 158

[218] Zhu, Q., Adam, Z., Choi, V., and Sankoff, D. Generalized gene adjacen-
cies, graph bandwidth and clusters in yeast evolution. In Bioinformatics research
and applications, vol. 4983 of Lecture Notes in Comput. Sci. Springer, Berlin, 2008,
pp. 134–145. 94

175

Appendix A

Pseudocode for algorithms in text

A.1 Algorithm for Lemma 4.1
This section specifies the construction under which Lemma 4.1 holds. We reuse this con-
structions as a subroutine for other algorithms in the text, specifically for Theorem 4.1 and
as a polynomial time construction routine for the reduction in Theorem 6.1. Let degH (v)
denote the degree of the vertex in the underlying adjacency instance of H.

Note that the algorithm either returns an instance without repeat spanning intervals,
or, if the number of occurrences of a repeat occurs in the repeat spanning intervals is greater
than its multiplicity, it returns No to the question of if the instance can be realized in a
genome model.

A.2 Algorithm for Theorem 4.1
This is the main algorithm for Theorem 4.1. It uses Algorithm 2 as a subroutine, and
then checks if the ‘paths’ of non-repeats between repeat clusters is realizable in the linear
genome model. If so, these paths are reduced to adjacencies, and the algorithm searches for
an Eulerian tour in the remaining instance. We use the term ‘Eulerian tour’ loosely here-
while the idea is still to make sure that there is a tour on the set of vertices that uses every
adjacency, depending on the genome model being used, we may have to add an auxiliary
vertex and multiedges to create an augmented graph in which we check for an Eulerian
tour.

A.3 Algorithm for Theorem 5.1
This is the algorithm for Theorem 5.1, which optimizes over the set of minimal repeat
spanning intervals in order to obtain an instance which is realizable in the mixed genome
model. The max_b_matching (·) routine specified here is the algorithm described to get
a maximum weight b-matching, as defined in Definition 3.3. The corresponding algorithm
is provided in Section 3.4.

176

Algorithm 2 convert_rsi (H,µ): Algorithm for replacing repeat spanning intervals by
paths in an instance with repeats in repeat spanning intervals disjoint from other intervals.
Input Instance (H,µ), H = (V,E), repeats contained in repeat spanning intervals not

contained in any other intervals, a genome model G.
Output An instance (H ′, µ′), H ′ = (V,E′), without repeat spanning intervals which is

realizable in the genome model G if and only if (H,µ) is realizable in G.
H ′ = (V ′, E′)← H = (V,EA) , µ′ ← µ

2: dict (e) = 0 for all e ∈ EA.
for each repeat spanning interval e ∈ Ersi, o (e) = u. r0. rk−1. v do

4: for i ∈ [k + 1] do
V ′ ← V ′ ∪ {re,i} . Adding 1 copy of ri

6: µ′ (re,i)← 1, µ′ (ri)← µ′ (ri)− 1 . Decreasing multiplicity
if (ri is unoriented and degH′ (ri) > 2µ′ (ri)) or

8: (ri is oriented and degH′ (ri) > µ′ (ri) + 1) then
for all adjacencies e′ = {u, ri}, u 6= ri if ri is oriented do

10: if dict (e′) = 1 then
E′ ← E′ \ {e′}

12: end if
end for

14: end if
if µ (ri) < 0 then return (H,µ) is not realizable in G. . Too many copies used

16: end if
if 0 < i < k then . Add path corresponding to walk for e

18: E′ ← E′ ∪ {{re,i, re,i−1}}
dict ({ri, ri−1})← 1 . Keeping track of compatible adjacencies

20: else if i = 0 then
E′ ← E′ ∪ {{re,0, u}}

22: dict ({r0, u})← 1
else if i = k − 1 then

24: E′ ← E′ ∪ {{re,k−1, v}}
dict ({rk−1, v})← 1

26: end if
end for

28: end for
return (H ′, µ′)

177

Algorithm 3 Algorithm for deciding if an instance is realizable if repeats are only in repeat
spanning intervals or adjacencies.
Input Instance (H,µ,w), H = (V,EA ∪ EI) connected, repeats only in adjacencies and

repeat spanning intervals.
Output Is (H,µ) realizable in the genome model G?

H = (V ′, E′), V ′ = ∅, E′ = ∅
2: (H ′, µ′)← convert_rsi (H,µ)
H ′′ = (V ′′, E′′)← H ′ = (V ′, E′) , µ′′ ← µ′

4: for each connected component H ′c = (V ′c , E′c) induced by non-repeats in (H ′, µ′) do
Vc ← V ′c ∪ {rc,u : r ∈ V ′ such that µ′ (r) > 1 and r adjacent to u ∈ V ′c}

6: φc (rc,u)← r ∀ rc,u ∈ Vc
Ec ← E′c ∪ {{u, rc,u} : ∀ {u, r} ∈ E′, u ∈ V ′c}

8: Hc = (Vc, Ec)
µc (v)← 1 for all v ∈ Vc

10: if ((Hc, µc) is realizable in the linear genome model) then
V ′′ ← V ′′ ∪ {vc} \ V ′c

12: µ′′ (vc)← 1
E′′ ← E′′ \ Ec

14: for all rc,u ∈ Vc \ V ′c do
E′′ ← E′′ ∪ {φc (rc,u) , vc}

16: end for
else

18: return (H,µ,w) is not realizable in genome model G
end if

20: end for
return check_realizability ((H ′′, µ′′) ,G) . Decision algorithm for adjacencies only

178

Algorithm 4 Algorithm for optimizing over the set of minimal repeat spanning intervals
when the non-repeats contained in them are oriented.
Input Realizable instance (HA, µ, w), HA =

(
V h ∪ V t ∪ V u, EA

)
in the mixed genome

model, minimal repeat spanning interval set EI , with oriented framing vertices.
Output Maximum weight subset S ⊆ EI such that (H ′, µ, w′), H ′ = (V,EA ∪ S), is real-

izable in the mixed genome model.
G′ = (V,E′)← HA = (V,EA) , µ′ ← µ,w′′ ← wA
S ← ∅, D ← ∅
edge_dictionary ← ∅ . Keeps track of new edges added.
for each repeat spanning interval e ∈ EI , framed by non-repeats u, v do . Order is
fixed

E′ ← E′ ∪ {{u, v}} . Adding representative edge
edge_dictionary ({u,w})← e . Label new edge with e
w′′ ({u, v})← w (e)
if o (e) = u. r. .r. v then

µ′ (r)← µ (r)− 1, µ′ (r)← µ (r)− 1 . Decrease multiplicity
D ← D ∪ {{u, r} , {v, r}}

else if o (e) = u. r. v then
µ′ (r)← µ (r)− 1 . Decrease multiplicity
D ← D ∪ {{u, r} , {r, v}}

end if
end for
E′ ← E′ \D . Remove extra edges
for e ∈ E′ ∩ EA do

w′′ (e)← 1 +
∑
e′∈EI w (e′) . Give high weights to remaining edges from EA

end for

G′′ = (V,Q ⊆ E′)←max_b_matching (G′, µ′, w′′) . b-matching algorithm
S ← {edge_dictionary (e) : ∀ e ∈ Q \ EA}
H ′ = (V,EA ∪ S)
return (H ′, µ, w′)

179

Appendix B

Some concepts and results from
computational complexity

B.1 Definitions and fixed parameter tractability

B.1.1 Conjunctive normal form

In Chapter 6, we referred to a CNF formula. We provide the definition of the same here.

Definition B.1. Let X = {x0, . . . , xn−1} be a set of n boolean variables. A boolean formula
Φ: X → {0, 1} is said to be specified in the conjunctive normal form (CNF) if it is specified
in the following structure.

Φ (X) = C0 ∧ C1 ∧ . . . ∧ Cm−1,

where each Ci =
(
lj0 ∨ . . . ∨ ljki

)
, ki ∈ N, is a clause, and each lj is a literal of a variable in

X .

Determining if there is a satisfying assignment for a formula in CNF is usually NP-
complete [197].

B.1.2 Parameterized complexity

The concept of parameterized complexity was proposed by Downey and Fellows [69,70,71].
We can define a problem as a set Q ⊆ Σ∗, where Σ is a finite alphabet. For any string
x ∈ Q, we define |x| to be the length of x. The question we ask is how we can recognize
a string x ∈ Q, preferably using an efficient algorithm. Downey and Fellows defined the
notion of a parameterized problem as follows.

Definition B.2. Let Q ⊆ Σ∗ be a problem.

1. A parameterization of Σ∗ is a polynomial time computable function κ : Σ∗ → N.

2. A parameterized problem over Σ is a pair (Q, κ), where Q ⊆ Σ∗ is a set of strings (a
problem) over Σ, and κ is a parameterization of Σ∗.

Based on this definition, they gave the following definition for a fixed parameter tractable
problem.

180

Definition B.3. [70]

1. An algorithm with an input alphabet Σ is said to be fixed parameter tractable with
respect to a parameterization κ : Σ∗ → N if there exists a computable function f : N→
N, and there exists a polynomial p ∈ Z [X], such that, for every string x ∈ Σ∗ in a
language Q given as input, the algorithm terminates in time O (f (κ (x)) p (|x|)).

2. A problem Q ⊆ Σ∗ is said to be fixed parameter tractable (FPT) with respect to the
parameterization κ : Σ∗ → N if there is a fixed parameter tractable algorithm with
respect to κ that decides Q.

As a counterpoint, Downey and Fellows also introduced the notion of parameterized
complexity [71]. This is defined through a hierarchy of complexity classes, called the W-
hierarchy of complexity classes. The hierarchy is given as follows.

FPT = W [0] ⊆W [1] ⊆W [2] ⊆ . . . ⊆W [P] ,

where the inclusions are conjectured to be strict. The W-hierarchy is defined using circuit
complexity, and we do not mention the exact definition here. It suffices here to know that
problems in W [1] itself are considered parameterized intractable.

B.2 The hardness of 3SAT(2,2)
This section provides a proof for Lemma 6.1, attributable to Ján Maňuch. The proof follows
a reduction from 3SAT.

Proof. First, note that 3SAT(2,2) is in NP by virtue of the fact that, given a satisfying
assignment for a CNF formula Φ which is in the form described by 3SAT(2,2), it is easy to
check if Φ outputs True for that assignment in polynomial time, by simply evaluating every
clause.

Now, consider an instance Φ = (X , C) of 3SAT, where X is a set of n variables, and C
is a set of m 3-clauses on these variables. We will construct an instance Φ′ = (X ′, C′) of
3SAT(2,2) which is satisfiable if and only if Φ is satisfiable.

Initialize X ′ = C′ = ∅. For each variable x ∈ C, such that x has κ (x) occurrences in
Φ, introduce κ (x) variables x0, . . . , xκ(x)−1 in X ′. To create the clauses in C′, first take all
the clauses in C, arbitrarily ordered, and replace the ith occurrence of a variable x ∈ X by
the variable xi instead, keeping the sign of the variable the same, i.e. positive literals stay
positive, and negative literals stay negative. Add the modified clauses to C′.

The second set of clauses to add impose a constraint making sure that all xi ∈ X ′
introduced for a single variable x ∈ X have the same value in a satisfying assignment. For
each xi ∈ X ′, add variables fx,i to X ′. Then, add clauses (¬xi ∨ xi+1 ∨ fx,i) for i ∈ [κ (x)]
to C′, with addition in the indices being done modulo κ (x). Finally, for each fx,i, add a
variable px,i to X ′, and add two clauses (px,i ∨ px,i ∨ ¬fx,i) and (¬px,i ∨ ¬px,i ∨ ¬fxi) to C′.

Note that, in the previous construction, the chain of clauses
∧
i∈[κ(x)] (¬xi ∨ xi+1 ∨ fx,i)

is satisfiable if fx,i = 0 if and only if xi = xi+1 for all i ∈ [κ (x)]. Also, the clause pair
(px,i ∨ px,i ∨ ¬fx,i) ∧ (¬px,i ∨ ¬px,i ∨ ¬fx,i) both evaluate to True if and only if fx,i = 0.
Thus, all the xi are guaranteed to have the same truth assignment.

In order to get an instance of 3SAT(2,2), we need to make sure that every variable has
4 occurrences, twice as a positive literal, and twice as a negative literal. Each xi currently

181

has 3 occurrences, so it is missing either a positive occurrence or a negative occurrence.
Each fx,i is missing a positive occurrence. For each xi, add a variable qx,i to X ′. Then, if xi
is missing a positive occurrence, add the clause (qx,i ∨ ¬qx,i ∨ xi) to C′. Conversely, if it is
missing a negative occurrence, add the clause (qx,i ∨ ¬qx,i ∨ ¬xi). Finally, add the clauses
(qx,i ∨ ¬qx,i ∨ fx,i) to C′. The total number of variables introduced is 12|C|, and the total
number of clauses introduced is 16|C|.

To prove the claim, note that by the construction given above, all fx,i must have negative
value in order for Φ′ to be satisfied, and that the values of the px,i’s do not matter, since
the fx,i’s are all 0. Similarly, the values of the qx,i’s do not matter, since both literals of
qx,i appear in a clause. So, a satisfying assignment for Φ′ fixes the values of the xi’s, which
means it fixes a value for each x ∈ X . Since the clauses in C are precisely a subset of those
in C′, with the literals indexed, these clauses must also be satisfied by the values fixed for
each x ∈ C, giving a satisfying assignment of Φ.

In the opposite direction, by fixing a satisfying assignment of Φ, we assign each xi ∈ X ′
the value of x ∈ X in this satisfying assignment. Then, setting all fx,i to 0 gives us a
satisfying assignment for Φ′. This completes the proof.

182

Appendix C

Primer on semidefinite
programming

This appendix is a short introduction to semidefinite programming and its applications in
combinatorial optimization. For a more thorough coverage of the topics discussed here, the
reader is referred to Grötschel, Lovász and Schrijver [98], which is also the source text for
this exposition.

Let M be an n×n real, symmetric matrix. It is a well-known fact in linear algebra that
the eigenvalues of M are also real. We say M is positive semidefinite if, for all eigenvalues
λ0, . . . , λn−1 of M , we have λi ≥ 0. This is equivalent to the following property on M .

xTMx ≥ 0 ∀ x ∈ Rn.

We denote a positive semidefinite matrix M by stating that M � 0. Positive semidefinite
matrices are often used as the matrix analogs of non-negative real numbers. One such
analogy is the extension of linear programming to semidefinite programming. Consider the
following inner product on two n× n real matrices A and B.

A •B =
n∑
i=1

n∑
j=1

aijbij .

Then, we can define a semidefinite program as follows.

Definition C.1. Let C be a symmetric matrix in Rn×n. Let each A0, . . . , Am−1 be m
other n × n symmetric real matrices, and let b be a vector in Rn. A semidefinite program
is defined as the following constraint satisfaction problem.

min
X∈Rn×n

C •X

subject to
Ai •X = bi ∀ i ∈ [m] ,

X � 0.

As in the case of linear programming, the equality in the constraints can be replaced
by inequalities. This is one definition of semidefinite programs; there are many equivalent
definitions based on the different characterizations of a positive semidefinite matrix. One

183

of these definitions follows from the fact that an n × n positive semidefinite matrix can
be expressed as the Gram matrix of n vectors in some complex vector space. So, each
entry xij can be expressed as xTi xj for two vectors xi and xj . Using this definition, we can
reformulate a semidefinite program as a constraint satisfaction problem in which we need
to find n vectors x0, . . . ,xn−1.

Semidefinite programs are natural generalizations of linear programs. As they are gen-
eralizations, they capture a larger class of constraint satisfaction problems which can be
efficiently solved. Indeed, methods for solving linear programs in polynomial time, such
as the ellipsoid method and interior point methods, can also be used to solve semidefinite
programs. The ellipsoid method, in particular, is well-suited to handling a large number
of structured constraints, such as those we deal with. However, while these algorithms
can run in polynomial time, they may only solve semidefinite programs up to an arbitrary
additive error, on which the complexity depends [98]. Improvements in interior point meth-
ods [179] promise extendability to semidefinite programs as well [204], allowing polynomial
time solvability with an exponential number of structured constraints.

Semidefinite programs are also important as a useful tool in combinatorial optimiza-
tion and in designing approximation algorithms. Many problems in optimization may be
formulated as non-convex programs, such as quadratic programs.

Definition C.2. Let C,A0, . . . , Am−1 be real symmetric n × n matrices. A quadratic
program is defined as the following constraint satisfaction problem.

min
x∈Rn

xTCx

subject to
xTAix = bi ∀i ∈ [m] .

Note that xTCx can be rewritten as Tr
(
CxxT

)
, where Tr (·) is the trace of the matrix.

From the discussion before, xxT is a positive semidefinite matrix, the Gramian matrix
of n 1-dimensional vectors, and Tr

(
CxxT

)
=
∑n
i=1

∑n
j cij .xi.xj , which is precisely the

matrix inner product we defined before. So, a quadratic program can be visualized as a
semidefinite program, with the positive semidefinite matrix being the Gramian matrix of
the n 1-dimensional vectors specified by entries in x. However, this program is non-convex,
and cannot be solved in polynomial time.

If we relax the constraint on x, and allow it to be a set of n-dimensional vectors,
we get a semidefinite program which is solvable in polynomial time. This is the concept
behind semidefinite relaxations. An especially useful fact is that we can efficiently recover
the vectors x0, . . . ,xn−1 of which the solution is a Gramian matrix of, using Cholesky
decomposition [98]. Thus, instead of getting a vector x, we obtain a set of vectors from the
semidefinite relaxation.

The use of semidefinite relaxations in the theory of approximation algorithms gained a
lot of support following the work of Goemans and Williamson, who used it to get a con-
stant factor approximation algorithm for the MAX-CUT problem on graphs [95]. Later, it
was proved that this is the best possible algorithm, assuming the Unique Games Conjec-
ture [117], and indeed, assuming the conjecture, the best approximation for all constraint
satisfaction problems is achieved by a certain simple semidefinite program [176]. As a result,
it is one of the standard techniques used to find approximation algorithms [92].

184

Appendix D

Polynomial time algorithms for
minimum cumulative stretch

In the following section, we show a simple algorithm for calculating the minimum cumulative
stretch on a highly structured hypergraph. The result presented was proved in the course of
an ongoing project to study polynomial time algorithms for finding a minimum cumulative
stretch order of certain restricted hypergraphs, particularly hypertrees. The project is a
collaboration with Cedric Chauve, Ján Maňuch and Arash Rafiey.

Lemma D.1. Let H = (V,E) be a hypergraph such that there is exactly 1 vertex v adjacent
to all hyperedges e0, . . . , eκ−1, and all other vertices are contained in exactly one edge. The
cumulative stretch problem for this hypergraph can be solved in polynomial time.

We call such an instance a hyperstar, or simply a star. The vertex v is called the central
vertex of the star. Note that stars avoid all Tucker patterns except for GIII,1.

Proof. Assume that |ei| ≤ |ei+1| for all i ∈ [κ− 1]. If not, we can always relabel the
hyperedges. We are going to prove the following claim.

Claim. Let σ (ei) denote the consecutive series of vertices belonging to ei, other than v, in

Figure D.1: A hyperstar in its optimal ordering. The white nodes represent vertices, and
the black nodes represent hyperedges.

185

an order σ. An optimal ordering π has the following structure.

π (eκ−1) .π (eκ−3) . . . π (e0) .v. (e1) . . . π (eκ−4) .π (eκ−2) if κ ≡ 1 mod 2, (D.1)
π (eκ−2) .π (eκ−4) . . . π (e0) .v. (e1) . . . π (eκ−3) .π (eκ−1) if κ ≡ 0 mod 2. (D.2)

Consider the cost of an order π which looks as follows.

π
(
eσ−1(0)

)
.π
(
eσ−1(1)

)
. . . π

(
eσ−1(i−1)

)
.v.
(
eσ−1(i)

)
. . . π

(
eσ−1(κ−2)

)
.π
(
eσ−1(κ−1)

)
,

where σ is a permutation on [κ] elements. A hyperedge eσ−1(k) to the left of v will contribute
to the stretch of all eσ−1(j), where j ≤ k. Thus, its vertices, other than v, contribute to the
minimum cumulative stretch k times. Extending this argument for both the edges to the
left of v, and those to the right of v, we can calculate the cost of the order as follows.

Costπ (H) =
i−1∑
j=0

(j + 1)
(
|eσ−1(j)| − 1

)
+
κ−1∑
j=i

(κ− j)
(
|eσ−1(j)| − 1

)
. (D.3)

In order to minimize this, we need to allocate the largest edges to the smallest coefficients
j + 1 and (κ− j) in the sums, and so on. Note that if the vertices in a single hyperedge
(apart from v) were not kept together in an optimal vertex ordering, these vertices would
contribute to the stretch of other hyperedges, and thus increase the cost.

To see that i = bκ/2c, which would imply the orders specified in (D.1) and (D.2), assume
that the size of the hyperedges is a concave continuous function f (x) in the domain [0, κ].
Then, the continuous cost can be computed as follows.

C (x) =
∫ x

0
(u+ 1) f (u) du+

∫ κ

x
(κ− u) f (u) du, (D.4)

If we optimize (D.4) with respect to x, we find that x = (κ− 1) /2, which establishes that
the hyperedges are equally distributed on the two sides of v.

Since this ordering can be found in polynomial time by simply keeping track of the size
of the hyperedges ei, this completes the proof of the lemma.

Assuming e0 ≤ . . . ≤ eκ−1 are the edges involved in the star, Lemma D.1 also implies
the following observations.

1. For any ei, i being an odd integer,
∑
t≤(i+1)/2 (|e2t−1| − 1) >

∑
t≤(i−1)/2 (|e2t| − 1).

2. For any ei, i being an even integer,
∑
t≤i/2 (|e2t−1| − 1) <

∑
t≤i/2 (|e2t| − 1).

Furthermore, if we take the substar on the edges |e0| ≤ . . . ≤ |ep|, p < κ − 1, the order
induced on the vertices in these edges by an optimal solution for the minimum cumulative
stretch ordering of the star must also be optimal. This is merely a consequence of the
iterative method by which we build the optimal star ordering, as indicated in (D.3).

This result is intended to serve as a stepping stone to a polynomial time algorithm
for finding a minimum cumulative stretch order of a larger class of hypergraphs, called
hypercaterpillars.

Definition D.1. A hypercaterpillar H = (V,E) is a hypergraph which consists of the
following set of hyperedges and vertices.

186

1. {v0, . . . , vn} is a set of n+ 1 backbone vertices.

2. {e1, . . . , en} is a set of n backbone hyperedges, such that vi, vi+1 ∈ ei+1 for i ∈ [n], and
no other vertices in ei have degree more than 1 (i.e. they are only contained in that
particular hyperedge).

3. For each i ∈ [n+ 1], there are hyperedges {ei,0, . . . , ei,ki−1} where ki ∈ Z≥0, which
contain vi, and the only other vertices in each ei,j have degree 1.

The number of backbone vertices is called the length of the hypercaterpillar. The maximum
number of non-backbone hyperedges containing a backbone vertex is said to be the width
of the caterpillar.

A hypercaterpillar avoids all Tucker patterns except for GIII,1. It may be visualized
as a chain of stars, with two stars being connected at the central vertex by a hyperedge.
An algorithm, or the absence of one, for the minimum cumulative stretch problem on
hypercaterpillars, in turn, may provide some insight into the tractability of the problem on
hypertrees.

187

	Approval
	Partial Copyright Licence
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Notation
	I Computational Genomics and Mathematics
	Introduction
	A quick overview of computational biology
	The basics of genome structure and organization
	Genome maps and mapping problems
	A framework for reconstructing palaeogenomes
	Contributions in this dissertation
	A note to the readers

	Background and preliminaries
	Representing genome maps
	Hypergraphs and binary matrices
	Properties on binary matrices and hypergraphs
	Defining the problems

	II The Consecutive Ones Property with Multiplicity
	Genome maps with repeats
	The problem with repeats
	Repeat clusters and repeat spanning intervals
	Deciding the existence of a genome map with repeats
	Optimizing to get a genome map with repeats

	The existence of genome maps with repeats
	Including repeat spanning intervals
	Fixed parameter tractability of realizability
	Improving decision algorithms

	Partial optimization problems on genome maps
	Partial optimization
	Tractability

	Optimization on repeat spanning intervals is hard
	Hardness of optimization
	Fixed parameter tractability
	Can we do better?

	III Vertex Orderings in Hypergraphs
	Overview of vertex ordering problems
	Motivation
	The gapped C1P problems
	Vertex ordering problems in graphs
	Generalizing to hypergraphs

	Approximating vertex ordering problems on hypergraphs
	Spreading metrics and 22–representations
	Cumulative stretch
	Spread
	A note on the bandwidth generalizations

	IV Applications: Software and Results
	A package for ancestral genome map reconstruction
	ANGES: Ancestral genome mapping ignoring repeats
	Applications and extensions

	Scaffolding ancient contigs
	Ancient DNA: challenges and solutions
	Methods: FPSAC
	Scaffolding the Black Death genome
	Subsequent work

	Reconstructing Anopheles genomes
	Context and overview
	Data: 16 Anopheles genomes
	Confirmation of the species tree
	Reconstructed ancestral gene order with ANGES
	Genome rearrangements in the Anophele phylogeny
	FPMAG: Using FPSAC techniques in ANGES
	Observations

	V Conclusion
	Conclusion
	Summary of contributions
	Extending this work
	Final thoughts and comments

	Bibliography
	Appendix Pseudocode for algorithms in text
	Algorithm for Lemma 4.1
	Algorithm for Theorem 4.1
	Algorithm for Theorem 5.1

	Appendix Some concepts and results from computational complexity
	Definitions and fixed parameter tractability
	The hardness of 3SAT(2,2)

	Appendix Primer on semidefinite programming
	Appendix Polynomial time algorithms for minimum cumulative stretch

